943 resultados para Mixed integer linear programming (MILP) model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces the approach of using TURF analysis to design a product line through a binary linear programming model. This improves the efficiency of the search for the solution to the problem compared to the algorithms that have been used to date. Furthermore, the proposed technique enables the model to be improved in order to overcome the main drawbacks presented by TURF analysis in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Investigação Operacional vem demonstrando ser uma valiosa ferramenta de gestão nos dias de hoje em que se vive num mercado cada vez mais competitivo. Através da Programação Linear pode-se reproduzir matematicamente um problema de maximização dos resultados ou minimização dos custos de produção com o propósito de auxiliar os gestores na tomada de decisão. A Programação Linear é um método matemático em que a função objectivo e as restrições assumem características lineares, com diversas aplicações no controlo de gestão, envolvendo normalmente problemas de utilização dos recursos disponíveis sujeitos a limitações impostas pelo processo produtivo ou pelo mercado. O objectivo geral deste trabalho é o de propor um modelo de Programação Linear para a programação ou produção e alocação de recursos necessários. Optimizar uma quantidade física designada função objectivo, tendo em conta um conjunto de condicionalismos endógenas às actividades em gestão. O objectivo crucial é dispor um modelo de apoio à gestão contribuindo assim para afectação eficiente de recursos escassos à disposição da unidade económica. Com o trabalho desenvolvido ficou patente a importância da abordagem quantitativa como recurso imprescindível de apoio ao processo de decisão. The operational research has proven to be a valuable management tool today we live in an increasingly competitive market. Through Linear Programming can be mathematically reproduce a problem of maximizing performance or minimizing production costs in order to assist managers in decision making. The Linear Programming is a mathematical method in which the objective function and constraints are linear features, with several applications in the control of management, usually involving problems of resource use are available subject to limitations imposed by the production process or the market. The overall objective of this work is to propose a Linear Programming model for scheduling or production and allocation of necessary resources. Optimizing a physical quantity called the objective function, given a set of endogenous constraints on management thus contributing to efficient allocation of scarce resources available to the economic unit. With the work has demonstrated the importance of the quantitative approach as essential resource to support the decision process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many research areas (such as public health, environmental contamination, and others) one deals with the necessity of using data to infer whether some proportion (%) of a population of interest is (or one wants it to be) below and/or over some threshold, through the computation of tolerance interval. The idea is, once a threshold is given, one computes the tolerance interval or limit (which might be one or two - sided bounded) and then to check if it satisfies the given threshold. Since in this work we deal with the computation of one - sided tolerance interval, for the two-sided case we recomend, for instance, Krishnamoorthy and Mathew [5]. Krishnamoorthy and Mathew [4] performed the computation of upper tolerance limit in balanced and unbalanced one-way random effects models, whereas Fonseca et al [3] performed it based in a similar ideas but in a tow-way nested mixed or random effects model. In case of random effects model, Fonseca et al [3] performed the computation of such interval only for the balanced data, whereas in the mixed effects case they dit it only for the unbalanced data. For the computation of twosided tolerance interval in models with mixed and/or random effects we recomend, for instance, Sharma and Mathew [7]. The purpose of this paper is the computation of upper and lower tolerance interval in a two-way nested mixed effects models in balanced data. For the case of unbalanced data, as mentioned above, Fonseca et al [3] have already computed upper tolerance interval. Hence, using the notions persented in Fonseca et al [3] and Krishnamoorthy and Mathew [4], we present some results on the construction of one-sided tolerance interval for the balanced case. Thus, in order to do so at first instance we perform the construction for the upper case, and then the construction for the lower case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to adapt a nonlinear model (Wang and Engel - WE) for simulating the phenology of maize (Zea mays L.), and to evaluate this model and a linear one (thermal time), in order to predict developmental stages of a field-grown maize variety. A field experiment, during 2005/2006 and 2006/2007 was conducted in Santa Maria, RS, Brazil, in two growing seasons, with seven sowing dates each. Dates of emergence, silking, and physiological maturity of the maize variety BRS Missões were recorded in six replications in each sowing date. Data collected in 2005/2006 growing season were used to estimate the coefficients of the two models, and data collected in the 2006/2007 growing season were used as independent data set for model evaluations. The nonlinear WE model accurately predicted the date of silking and physiological maturity, and had a lower root mean square error (RMSE) than the linear (thermal time) model. The overall RMSE for silking and physiological maturity was 2.7 and 4.8 days with WE model, and 5.6 and 8.3 days with thermal time model, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two graphs with adjacency matrices $\mathbf{A}$ and $\mathbf{B}$ are isomorphic if there exists a permutation matrix $\mathbf{P}$ for which the identity $\mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \mathbf{B}$ holds. Multiplying through by $\mathbf{P}$ and relaxing the permutation matrix to a doubly stochastic matrix leads to the linear programming relaxation known as fractional isomorphism. We show that the levels of the Sherali--Adams (SA) hierarchy of linear programming relaxations applied to fractional isomorphism interleave in power with the levels of a well-known color-refinement heuristic for graph isomorphism called the Weisfeiler--Lehman algorithm, or, equivalently, with the levels of indistinguishability in a logic with counting quantifiers and a bounded number of variables. This tight connection has quite striking consequences. For example, it follows immediately from a deep result of Grohe in the context of logics with counting quantifiers that a fixed number of levels of SA suffice to determine isomorphism of planar and minor-free graphs. We also offer applications in both finite model theory and polyhedral combinatorics. First, we show that certain properties of graphs, such as that of having a flow circulation of a prescribed value, are definable in the infinitary logic with counting with a bounded number of variables. Second, we exploit a lower bound construction due to Cai, Fürer, and Immerman in the context of counting logics to give simple explicit instances that show that the SA relaxations of the vertex-cover and cut polytopes do not reach their integer hulls for up to $\Omega(n)$ levels, where $n$ is the number of vertices in the graph.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’industrie forestière est un secteur qui, même s’il est en déclin, se trouve au cœur du débat sur la mondialisation et le développement durable. Pour de nombreux pays tels que le Canada, la Suède et le Chili, les objectifs sont de maintenir un secteur florissant sans nuire à l’environnement et en réalisant le caractère fini des ressources. Il devient important d’être compétitif et d’exploiter de manière efficace les territoires forestiers, de la récolte jusqu’à la fabrication des produits aux usines, en passant par le transport, dont les coûts augmentent rapidement. L’objectif de ce mémoire est de développer un modèle de planification tactique/opérationnelle qui permet d’ordonnancer les activités pour une année de récolte de façon à satisfaire les demandes des usines, sans perdre de vue le transport des quantités récoltées et la gestion des inventaires en usine. L’année se divise en 26 périodes de deux semaines. Nous cherchons à obtenir les horaires et l’affectation des équipes de récolte aux blocs de coupe pour une année. Le modèle mathématique développé est un problème linéaire mixte en nombres entiers dont la structure est basée sur chaque étape de la chaine d’approvisionnement forestière. Nous choisissons de le résoudre par une méthode exacte, le branch-and-bound. Nous avons pu évaluer combien la résolution directe de notre problème de planification était difficile pour les instances avec un grand nombre de périodes. Cependant l’approche des horizons roulants s’est avérée fructueuse. Grâce à elle en une journée, il est possible de planifier les activités de récolte des blocs pour l’année entière (26 périodes).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse étudie une approche intégrant la gestion de l’horaire et la conception de réseaux de services pour le transport ferroviaire de marchandises. Le transport par rail s’articule autour d’une structure à deux niveaux de consolidation où l’affectation des wagons aux blocs ainsi que des blocs aux services représentent des décisions qui complexifient grandement la gestion des opérations. Dans cette thèse, les deux processus de consolidation ainsi que l’horaire d’exploitation sont étudiés simultanément. La résolution de ce problème permet d’identifier un plan d’exploitation rentable comprenant les politiques de blocage, le routage et l’horaire des trains, de même que l’habillage ainsi que l’affectation du traffic. Afin de décrire les différentes activités ferroviaires au niveau tactique, nous étendons le réseau physique et construisons une structure de réseau espace-temps comprenant trois couches dans lequel la dimension liée au temps prend en considération les impacts temporels sur les opérations. De plus, les opérations relatives aux trains, blocs et wagons sont décrites par différentes couches. Sur la base de cette structure de réseau, nous modélisons ce problème de planification ferroviaire comme un problème de conception de réseaux de services. Le modèle proposé se formule comme un programme mathématique en variables mixtes. Ce dernie r s’avère très difficile à résoudre en raison de la grande taille des instances traitées et de sa complexité intrinsèque. Trois versions sont étudiées : le modèle simplifié (comprenant des services directs uniquement), le modèle complet (comprenant des services directs et multi-arrêts), ainsi qu’un modèle complet à très grande échelle. Plusieurs heuristiques sont développées afin d’obtenir de bonnes solutions en des temps de calcul raisonnables. Premièrement, un cas particulier avec services directs est analysé. En considérant une cara ctéristique spécifique du problème de conception de réseaux de services directs nous développons un nouvel algorithme de recherche avec tabous. Un voisinage par cycles est privilégié à cet effet. Celui-ci est basé sur la distribution du flot circulant sur les blocs selon les cycles issus du réseau résiduel. Un algorithme basé sur l’ajustement de pente est développé pour le modèle complet, et nous proposons une nouvelle méthode, appelée recherche ellipsoidale, permettant d’améliorer davantage la qualité de la solution. La recherche ellipsoidale combine les bonnes solutions admissibles générées par l’algorithme d’ajustement de pente, et regroupe les caractéristiques des bonnes solutions afin de créer un problème élite qui est résolu de facon exacte à l’aide d’un logiciel commercial. L’heuristique tire donc avantage de la vitesse de convergence de l’algorithme d’ajustement de pente et de la qualité de solution de la recherche ellipsoidale. Les tests numériques illustrent l’efficacité de l’heuristique proposée. En outre, l’algorithme représente une alternative intéressante afin de résoudre le problème simplifié. Enfin, nous étudions le modèle complet à très grande échelle. Une heuristique hybride est développée en intégrant les idées de l’algorithme précédemment décrit et la génération de colonnes. Nous proposons une nouvelle procédure d’ajustement de pente où, par rapport à l’ancienne, seule l’approximation des couts liés aux services est considérée. La nouvelle approche d’ajustement de pente sépare ainsi les décisions associées aux blocs et aux services afin de fournir une décomposition naturelle du problème. Les résultats numériques obtenus montrent que l’algorithme est en mesure d’identifier des solutions de qualité dans un contexte visant la résolution d’instances réelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le problème de tarification qui nous intéresse ici consiste à maximiser le revenu généré par les usagers d'un réseau de transport. Pour se rendre à leurs destinations, les usagers font un choix de route et utilisent des arcs sur lesquels nous imposons des tarifs. Chaque route est caractérisée (aux yeux de l'usager) par sa "désutilité", une mesure de longueur généralisée tenant compte à la fois des tarifs et des autres coûts associés à son utilisation. Ce problème a surtout été abordé sous une modélisation déterministe de la demande selon laquelle seules des routes de désutilité minimale se voient attribuer une mesure positive de flot. Le modèle déterministe se prête bien à une résolution globale, mais pèche par manque de réalisme. Nous considérons ici une extension probabiliste de ce modèle, selon laquelle les usagers d'un réseau sont alloués aux routes d'après un modèle de choix discret logit. Bien que le problème de tarification qui en résulte est non linéaire et non convexe, il conserve néanmoins une forte composante combinatoire que nous exploitons à des fins algorithmiques. Notre contribution se répartit en trois articles. Dans le premier, nous abordons le problème d'un point de vue théorique pour le cas avec une paire origine-destination. Nous développons une analyse de premier ordre qui exploite les propriétés analytiques de l'affectation logit et démontrons la validité de règles de simplification de la topologie du réseau qui permettent de réduire la dimension du problème sans en modifier la solution. Nous établissons ensuite l'unimodalité du problème pour une vaste gamme de topologies et nous généralisons certains de nos résultats au problème de la tarification d'une ligne de produits. Dans le deuxième article, nous abordons le problème d'un point de vue numérique pour le cas avec plusieurs paires origine-destination. Nous développons des algorithmes qui exploitent l'information locale et la parenté des formulations probabilistes et déterministes. Un des résultats de notre analyse est l'obtention de bornes sur l'erreur commise par les modèles combinatoires dans l'approximation du revenu logit. Nos essais numériques montrent qu'une approximation combinatoire rudimentaire permet souvent d'identifier des solutions quasi-optimales. Dans le troisième article, nous considérons l'extension du problème à une demande hétérogène. L'affectation de la demande y est donnée par un modèle de choix discret logit mixte où la sensibilité au prix d'un usager est aléatoire. Sous cette modélisation, l'expression du revenu n'est pas analytique et ne peut être évaluée de façon exacte. Cependant, nous démontrons que l'utilisation d'approximations non linéaires et combinatoires permet d'identifier des solutions quasi-optimales. Finalement, nous en profitons pour illustrer la richesse du modèle, par le biais d'une interprétation économique, et examinons plus particulièrement la contribution au revenu des différents groupes d'usagers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La gestion des ressources, équipements, équipes de travail, et autres, devrait être prise en compte lors de la conception de tout plan réalisable pour le problème de conception de réseaux de services. Cependant, les travaux de recherche portant sur la gestion des ressources et la conception de réseaux de services restent limités. La présente thèse a pour objectif de combler cette lacune en faisant l’examen de problèmes de conception de réseaux de services prenant en compte la gestion des ressources. Pour ce faire, cette thèse se décline en trois études portant sur la conception de réseaux. La première étude considère le problème de capacitated multi-commodity fixed cost network design with design-balance constraints(DBCMND). La structure multi-produits avec capacité sur les arcs du DBCMND, de même que ses contraintes design-balance, font qu’il apparaît comme sous-problème dans de nombreux problèmes reliés à la conception de réseaux de services, d’où l’intérêt d’étudier le DBCMND dans le contexte de cette thèse. Nous proposons une nouvelle approche pour résoudre ce problème combinant la recherche tabou, la recomposition de chemin, et une procédure d’intensification de la recherche dans une région particulière de l’espace de solutions. Dans un premier temps la recherche tabou identifie de bonnes solutions réalisables. Ensuite la recomposition de chemin est utilisée pour augmenter le nombre de solutions réalisables. Les solutions trouvées par ces deux méta-heuristiques permettent d’identifier un sous-ensemble d’arcs qui ont de bonnes chances d’avoir un statut ouvert ou fermé dans une solution optimale. Le statut de ces arcs est alors fixé selon la valeur qui prédomine dans les solutions trouvées préalablement. Enfin, nous utilisons la puissance d’un solveur de programmation mixte en nombres entiers pour intensifier la recherche sur le problème restreint par le statut fixé ouvert/fermé de certains arcs. Les tests montrent que cette approche est capable de trouver de bonnes solutions aux problèmes de grandes tailles dans des temps raisonnables. Cette recherche est publiée dans la revue scientifique Journal of heuristics. La deuxième étude introduit la gestion des ressources au niveau de la conception de réseaux de services en prenant en compte explicitement le nombre fini de véhicules utilisés à chaque terminal pour le transport de produits. Une approche de solution faisant appel au slope-scaling, la génération de colonnes et des heuristiques basées sur une formulation en cycles est ainsi proposée. La génération de colonnes résout une relaxation linéaire du problème de conception de réseaux, générant des colonnes qui sont ensuite utilisées par le slope-scaling. Le slope-scaling résout une approximation linéaire du problème de conception de réseaux, d’où l’utilisation d’une heuristique pour convertir les solutions obtenues par le slope-scaling en solutions réalisables pour le problème original. L’algorithme se termine avec une procédure de perturbation qui améliore les solutions réalisables. Les tests montrent que l’algorithme proposé est capable de trouver de bonnes solutions au problème de conception de réseaux de services avec un nombre fixe des ressources à chaque terminal. Les résultats de cette recherche seront publiés dans la revue scientifique Transportation Science. La troisième étude élargie nos considérations sur la gestion des ressources en prenant en compte l’achat ou la location de nouvelles ressources de même que le repositionnement de ressources existantes. Nous faisons les hypothèses suivantes: une unité de ressource est nécessaire pour faire fonctionner un service, chaque ressource doit retourner à son terminal d’origine, il existe un nombre fixe de ressources à chaque terminal, et la longueur du circuit des ressources est limitée. Nous considérons les alternatives suivantes dans la gestion des ressources: 1) repositionnement de ressources entre les terminaux pour tenir compte des changements de la demande, 2) achat et/ou location de nouvelles ressources et leur distribution à différents terminaux, 3) externalisation de certains services. Nous présentons une formulation intégrée combinant les décisions reliées à la gestion des ressources avec les décisions reliées à la conception des réseaux de services. Nous présentons également une méthode de résolution matheuristique combinant le slope-scaling et la génération de colonnes. Nous discutons des performances de cette méthode de résolution, et nous faisons une analyse de l’impact de différentes décisions de gestion des ressources dans le contexte de la conception de réseaux de services. Cette étude sera présentée au XII International Symposium On Locational Decision, en conjonction avec XXI Meeting of EURO Working Group on Locational Analysis, Naples/Capri (Italy), 2014. En résumé, trois études différentes sont considérées dans la présente thèse. La première porte sur une nouvelle méthode de solution pour le "capacitated multi-commodity fixed cost network design with design-balance constraints". Nous y proposons une matheuristique comprenant la recherche tabou, la recomposition de chemin, et l’optimisation exacte. Dans la deuxième étude, nous présentons un nouveau modèle de conception de réseaux de services prenant en compte un nombre fini de ressources à chaque terminal. Nous y proposons une matheuristique avancée basée sur la formulation en cycles comprenant le slope-scaling, la génération de colonnes, des heuristiques et l’optimisation exacte. Enfin, nous étudions l’allocation des ressources dans la conception de réseaux de services en introduisant des formulations qui modèlent le repositionnement, l’acquisition et la location de ressources, et l’externalisation de certains services. À cet égard, un cadre de solution slope-scaling développé à partir d’une formulation en cycles est proposé. Ce dernier comporte la génération de colonnes et une heuristique. Les méthodes proposées dans ces trois études ont montré leur capacité à trouver de bonnes solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le problème d'allocation de postes d'amarrage (PAPA) est l'un des principaux problèmes de décision aux terminaux portuaires qui a été largement étudié. Dans des recherches antérieures, le PAPA a été reformulé comme étant un problème de partitionnement généralisé (PPG) et résolu en utilisant un solveur standard. Les affectations (colonnes) ont été générées a priori de manière statique et fournies comme entrée au modèle %d'optimisation. Cette méthode est capable de fournir une solution optimale au problème pour des instances de tailles moyennes. Cependant, son inconvénient principal est l'explosion du nombre d'affectations avec l'augmentation de la taille du problème, qui fait en sorte que le solveur d'optimisation se trouve à court de mémoire. Dans ce mémoire, nous nous intéressons aux limites de la reformulation PPG. Nous présentons un cadre de génération de colonnes où les affectations sont générées de manière dynamique pour résoudre les grandes instances du PAPA. Nous proposons un algorithme de génération de colonnes qui peut être facilement adapté pour résoudre toutes les variantes du PAPA en se basant sur différents attributs spatiaux et temporels. Nous avons testé notre méthode sur un modèle d'allocation dans lequel les postes d'amarrage sont considérés discrets, l'arrivée des navires est dynamique et finalement les temps de manutention dépendent des postes d'amarrage où les bateaux vont être amarrés. Les résultats expérimentaux des tests sur un ensemble d'instances artificielles indiquent que la méthode proposée permet de fournir une solution optimale ou proche de l'optimalité même pour des problème de très grandes tailles en seulement quelques minutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building robust recognition systems requires a careful understanding of the effects of error in sensed features. Error in these image features results in a region of uncertainty in the possible image location of each additional model feature. We present an accurate, analytic approximation for this uncertainty region when model poses are based on matching three image and model points, for both Gaussian and bounded error in the detection of image points, and for both scaled-orthographic and perspective projection models. This result applies to objects that are fully three- dimensional, where past results considered only two-dimensional objects. Further, we introduce a linear programming algorithm to compute the uncertainty region when poses are based on any number of initial matches. Finally, we use these results to extend, from two-dimensional to three- dimensional objects, robust implementations of alignmentt interpretation- tree search, and ransformation clustering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two mixed bridged one-dimensional (1D) polynuclear complexes, [Cu3L2(mu(1,1)-N-3)(2)(mu-Cl)Cl](n) (1) and {[Cu3L2(mu-Cl)(3)Cl]center dot 0.46CH(3)OH}(n), (2), have been synthesized using the tridentate reduced Schiff-base ligand HL (2-[(2-dimethylamino-ethylamino)-methyl]-phenol). The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. In both complexes the basic trinuclear angular units are joined together by weak chloro bridges to form a 1D chain. The trinuclear structure of 1 is composed of two terminal square planar [Cu(L)(mu(1,1)-N-3)] units connected by a central Cu(II) atom through bridging nitrogen atoms of end-on azido ligands and the phenoxo oxygen atom of the tridentate ligand. These four coordinating atoms along with a chloride ion form a distorted trigonal bipyramidal geometry around the central Cu(II). The structure of 2 is similar; the only difference being a Cl bridge replacing the mu(1,1)-N-3 bridge in the trinuclear unit. The magnetic properties of both trinuclear complexes can be very well reproduced with a simple linear symmetrical trimer model (H = JS(i)S(i+1)) with only one intracluster exchange coupling (J) including a weak intertrimer interaction (.j) reproduced with the molecular field approximation. This model provides very satisfactory fits for both complexes in the whole temperature range with the following parameters: g = 2.136(3), J = 93.9(3) cm(-1) and zj= -0.90(3) cm(-1) (z = 2) for 1 and g = 2.073(7), J = -44.9(4) cm(-1) and zJ = -1.26(6) cm(-1) (z = 2) for 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The constrained compartmentalized knapsack problem can be seen as an extension of the constrained knapsack problem. However, the items are grouped into different classes so that the overall knapsack has to be divided into compartments, and each compartment is loaded with items from the same class. Moreover, building a compartment incurs a fixed cost and a fixed loss of the capacity in the original knapsack, and the compartments are lower and upper bounded. The objective is to maximize the total value of the items loaded in the overall knapsack minus the cost of the compartments. This problem has been formulated as an integer non-linear program, and in this paper, we reformulate the non-linear model as an integer linear master problem with a large number of variables. Some heuristics based on the solution of the restricted master problem are investigated. A new and more compact integer linear model is also presented, which can be solved by a branch-and-bound commercial solver that found most of the optimal solutions for the constrained compartmentalized knapsack problem. On the other hand, heuristics provide good solutions with low computational effort. (C) 2011 Elsevier BM. All rights reserved.