927 resultados para Minimal enough strength on controls


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ('ORCHIDEE'), and the other a forest growth model particularly developed for Mediterranean simulations ('GOTILWA+'), was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work aimed to find out the suitability of foam as medium in application of thin liquid films. This consists of research over phenomena related to foam physics and behaviour. Solutions and mixtures to be foamed, foaming agents, foam generation and application methods were evaluated. Over the evaluated solutions and mixtures coating paste and CMC did not foam well. Latex and PVA solutions were foamable and the best solution for foam use was starch. PVA and casein can be used as foaming agents, but the best results were achieved with sodium dodecyl sulphate (SDS). SDS works well with starch solutions producing fine and stable foam. Foaming was done with simple mixers where pressurized air was fed to the solution. The foaming works fine when enough shear force is used together with sufficient foaming agent concentration. Foam application with curtain, rod and cylinder methods with a gap between the application device and paper were not usable because of high coating amount. Coating amounts were smallest with the blade method which achieved 0.9 g/m2 starch layer. Although some strength decrease was expected because of the foaming agent, it dit not have significant effect. The targeted coating amount of 0.5 g/m2 was not achieved due to the limitations with the methods. More precise foam application methods are needed. Continuous foam generation and feed to the paper surface with controllable device such as application teeth could improve the results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objectives of the work were to study the effect of dewatering time varying on formation properties of papersheets, to determine the role of fines fraction in creation of paper with good formation and strength properties of papersheets, and also to study the effect of charge modification of fibers fractionations on formation properties of handsheets. The paper formation is one of the most important structural properties of paper. This property has effect on physical and optical characteristics of paper. In thi work the effect of formation on tensile strength was determined. The formation properties were analyzed by using the AMBERTEC Beta Formation Tester. The PAM addition as a f;locculant agent did some changes in the formation of paper. Paper sheets were also made from different furnishes of both birch and pine pulps. The fibers particles as a fines have great effect on drainability changes. Fines fraction played important role in papermaking. The two kinds of pulps (pine and birch pulps) were also used in this work for investigation of fines role. As it was expected the fines fraction gave positive effect on paper formation, but when fines fraction was added above initial fines content the formation of paper was deteriorated. The effect of paper formation on tensile strength was also determined. In many cases the poor formation of paper had negative effect on strength properties of paper..

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The properties of the paper surface play a crucial role in ensuring suitable quality and runnability in various converting and finishing operations, such as printing. Plasma surface modification makes it possible to modify the surface chemistry of paper without altering the bulk material properties. This also makes it possible to investigate the role of the surface chemistry alone on printability without influencing the porous structure of the pigment-coated paper. Since the porous structure of a pigment coating controls both ink setting and optical properties, surface chemical changes created by a plasma modification have a potential to decouple these two effects and to permit a better optimization of them both. The aim of this work was to understand the effects of plasma surface modification on paper properties, and how it influences printability in the sheet-fed offset process. The objective was to broaden the fundamental understanding of the role of surface chemistry on offset printing. The effects of changing the hydrophilicity/ hydrophobicity and the surface chemical composition by plasma activation and plasma coatings on the properties of coated paper and on ink-paper interactions as well as on sheet-fed offset print quality were investigated. In addition, the durability of the plasma surface modification was studied. Nowadays, a typical sheet-fed offset press also contains units for surface finishing, for example UVvarnishing. The role of the surface chemistry on the UV-varnish absorption into highly permeable and porous pigment-coated paper was also investigated. With plasma activation it was possible to increase the surface energy and hydrophilicity of paper. Both polar and dispersion interactions were found to increase, although the change was greater in the polar interactions due to induced oxygen molecular groups. The results indicated that plasma activation takes place particularly in high molecular weight components such as the dispersion chemicals used to stabilize the pigment and latex particles. Surface composition, such as pigment and binder type, was found to influence the response to the plasma activation. The general trend was that pilot-scale treatment modified the surface chemistry without altering the physical coating structure, whereas excessive laboratory-scale treatment increased the surface roughness and reduced the surface strength, which led to micro-picking in printing. It was shown that pilot-scale plasma activation in combination with appropriate ink oils makes it possible to adjust the ink-setting rate. The ink-setting rate decreased with linseed-oil-based inks, probably due to increased acid-base interactions between the polar groups in the oil and the plasma-treated paper surface. With mineral-oil-based inks, the ink setting accelerated due to plasma activation. Hydrophobic plasma coatings were able to reduce or even prevent the absorption of dampening water into pigmentcoated paper, even when the dampening water was applied under the influence of nip pressure. A uniform hydrophobic plasma coating with sufficient chemical affinity with ink gave an improved print quality in terms of higher print density and lower print mottle. It was also shown that a fluorocarbon plasma coating reduced the free wetting of the UV-varnish into the highly permeable and porous pigment coating. However, when the UV-varnish was applied under the influence of nip pressure, which leads to forced wetting, the role of the surface chemical composition seems to be much less. A decay in surface energy and wettability occurred during the first weeks of storage after plasma activation, after which it leveled off. However, the oxygen/carbon elemental ratio did not decrease as a function of time, indicating that ageing could be caused by a re-orientation of polar groups or by a contamination of the surface. The plasma coatings appeared to be more stable when the hydrophobicity was higher, probably due to fewer interactions with oxygen and water vapor in the air.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose for the thesis was to study the thermo treatment of finger-jointed wood. The thesis concentrated on examining the tensile and bending strength of finger-jointed and thermo treated wood. The aim was to find out how different treatment temperature levels and adhesives influence the strength of wood that has been finger-jointed before heat treatment. Secondary objectives were to examine the influence of the treatment time at one temperature, determine differences in the strength between the joints in heartwood and sapwood, examine the visual appearance of the finger joints after the treatment and establish possibilities to reach a characteristic strength level corresponding to C14. Only minor differences in strength properties were measured between the finger-jointed wood treatments II and III. A greater difference was shown between these two treatment temperatures I, which lead to reduced strength. The average strength of joints glued with adhesive 2 was higher after treatments II and III compared to those glued with the adhesive 1. At the treatment temperature I, the adhesive 1 strength properties were at the same level compared to the adhesive 2 or better. There were not any significant differences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High strength steel (HSS) has been in use in workshops since the 1980s. At that time, the significance of the term HSS differed from the modern conception as the maximum yield strength of HSSs has increased nearly every year. There are three different ways to make HSS. The first and oldest method is QT (quenched and tempered) followed by the TMCP (thermomechanical controlled process) and DQ (direct quenching) methods. This thesis consists of two parts, the first of which part introduces the research topic and discusses welded HSS structures by characterizing the most important variables. In the second part of the thesis, the usability of welded HSS structures is examined through a set of laboratory tests. The results of this study explain the differences in the usability of the welded HSSs made by the three different methods. The results additionally indicate that usage of different HSSs in the welded structures presumes that manufacturers know what kind of HSS they are welding. As manufacturers use greater strength HSSs in welded structures, the demands for welding rise as well. Therefore, during the manufacturing process, factors such as heat input, cooling time, weld quality, and more must be under careful observation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of high-strength aluminium alloys as material for injection molding tools to produce small and medium batches of plastic products as well as prototyping molds is becoming of increasing demand by the tooling industry. These alloys are replacing the traditional use of steel in the cases above because they offer many advantages such as very high thermal conductivity associated with good corrosion and wear resistance presenting good machinability in milling and electrical discharge machining operations. Unfortunately there is little technological knowledge on the Electrical Discharge Machining (EDM) of high-strength aluminium alloys, especially about the AMP 8000 alloy. The duty factor, which means the ratio between pulse duration and pulse cycle time exerts an important role on the performance of EDM. This work has carried out an experimental study on the variation of the duty factor in order to analyze its influence on material removal rate and volumetric relative wear under roughing conditions of EDM process. The results showed that high values of duty factor are possible to be applied without bringing instability into the EDM process and with improvement of material removal rate and volumetric relative wear.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optimization of high strength and toughness combination on the effect of weldability is very vital to be considered in offshore oil and gas industries. Having a balanced and improved high strength and toughness is very much recommended in offshore structures for an effective production and viable exploration of hydrocarbons. This thesis aims to investigate the possibilities to improve the toughness of high strength steel. High carbon contents induce hardness and needs to be reduced for increasing toughness. The rare combination of high strength with high toughness possibilities was examined by determining the following toughening mechanism of: Heat treatment and optimal microstructure, Thermomechanical processing, Effect of welding parameters on toughness and weldability of steel. The implementation of weldability of steels to attain high toughness for high strength in offshore structures is mostly in shipbuilding, offshore platforms, and pipelines for high operating pressures. As a result, the toughening mechanisms suggested have benefits to the aims of the effect of high strength to high toughness of steel for efficiency, production and cost reduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to assess the capacity of sulfentrazone applied in pre-emergence in controlling Ipomoea hederifolia and Ipomoea quamoclit as a function of the time interval between herbicide application and the occurrence of rain, and the presence of sugarcane straw on the soil surface. Two greenhouse experiments and one field experiment were conducted. For the greenhouse experiments, the study included three doses of sulfentrazone applied by spraying 0, 0.6, and 0.9 kg ha-1, two amounts of straw on the soil (0 and 10 t ha-1), and five time intervals between the application of herbicide and rain simulation (0, 20, 40, 60, and 90 days). In the field experiment, five herbicide treatments (sulfentrazone at 0.6 and 0.9 kg ha-1, sulfentrazone + hexazinone at 0.6 + 0.25 kg ha-1, amicarbazone at 1.4 kg ha-1, and imazapic at 0.147 kg ha-1) and two controls with no herbicide were studied. Management conditions with or without sugarcane straw on the soil were also assessed. From the greenhouse experiments, sulfentrazone application at 0.6 kg ha-1 was found to provide for the efficient control of I. hederifolia and I. quamoclit in a dry environment, with up to 90 days between herbicide application and rain simulation. After herbicide application, 20 mm of simulated rain was enough to leach sulfentrazone from the straw to the soil, as the biological effects observed in I. hederifolia and I. quamoclit remained unaffected. Under field conditions, either with or without sugarcane straw left on the soil, sulfentrazone alone (0.6 or 0.9 kg ha-1) or sulfentrazone combined with hexazinone (0.6 + 0.25 kg ha-1) was effective in the control of I. hederifolia and I. quamoclit, exhibiting similar or better control than amicarbazone (1.4 kg ha-1) and imazapic (0.147 kg ha-1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cancer anemia is classified as an anemia of chronic diseases, although it is sometimes the first symptom of cancer. Cancer anemia includes a hemolytic component, important in the terminal stage when even transfused cells are rapidly destroyed. The presence of a chronic component and the terminal complications of the illness limit studies of the hemolytic component. A multifocal model of tumor growth was used here to simulate the terminal metastatic dissemination stage (several simultaneous inoculations of Walker 256 cells). The hemolytic component of anemia began 3-4 days after inoculation in 100% of the rats and progressed rapidly thereafter: Hb levels dropped from 14.9 ± 0.02 to 8.7 ± 0.06 from days 7 to 11 (~5 times the physiologically normal rate in rats) in the absence of bleeding. The development of anemia was correlated (r2 = 0.86) with the development of other systemic effects such as anorexia. There was a significant decrease in the osmotic fragility of circulating erythrocytes: the NaCl concentration causing 50% lysis was reduced from 4.52 ± 0.06 to 4.10 ± 0.01 (P<0.01) on day 7, indicating a reduction in erythrocyte volume. However, with mild metabolic stress (4-h incubation at 37oC), the erythrocytes showed a greater increase in osmotic fragility than the controls, suggesting marked alteration of erythrocyte homeostasis. These effects may be due to primary plasma membrane alterations (transport and/or permeability) and/or may be secondary to metabolic changes. This multifocal model is adequate for studying the hemolytic component of cancer anemia since it is rapid, highly reproducible and causes minimal animal suffering.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tämän työn tavoitteena oli hitsata tandem MAG –laitteistolla 25 mm paksua Ruukin E500 TMCP terästä. Työssä oli tarkoituksena vähentää railotilavuutta mahdollisimman paljon sekä suorittaa testihitsaukset 0.8 kJ/mm sekä 2.5 kJ/mm lämmöntuonneilla. Teoriaosuudessa käsiteltiin Tandem MAG-hitsaukseen, sen tuottavuuteen ja laatukysymyksiin liittyviä asioita sekä siinä perehdyttiin suurlujuusteräksien käyttöön hitsauksessa sekä laivanrakennuksessa. Kokeellisessa osuudessa perehdyttiin hitsauksessa huomattuihin etuihin, ongelmiin sekä ongelmien ratkaisumahdollisuuksiin. Hitsausliitoksen mekaaniset ominaisuudet tutkittiin rikkomattomin sekä rikkovin menetelmin. Alustavat hitsausohjeet luotiin kummallekin lämmöntuonnille. Testaukset aloitettiin 30 º railokulmalla pienentäen kulmaa mahdollisuuksien mukaan. Testauksissa ei saatu hitsattua onnistuneesti alle 30 º railokulmalla. Hitsaustestien aikana huomattiin magneettisen puhalluksen vaikutus hitsaustapahtumaan. Kaasunvirtausnopeuden tuli olla tietyn suuruinen jotta palkokerrokset onnistuivat ilman huokoisuusongelmaa. Pienemmällä lämmöntuonnilla hitsattaessa kaasunvirtausnopeudet olivat tärkeämpiä hitsatessa ylempiä palkokerroksia. Kääntämällä hitsauspoltinta sivuttaissuunnassa 7-10 astetta auttoi ehkäisemään reunahaavan syntymistä. Rikkovista menetelmistä testitulokset olivat hyväksyttyjä kaikkien muiden paitsi päittäishitsin sivutaivutuskokeen osalta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experiential marketing is increasingly seen as a new magical key to consumers’ hearts. Brands are turning brick-and-mortar stores into state of the art retail spaces where memorable experiences and strong brand relationships are hoped to be born. Around the globe, several brands have opened up a special format of stores – the experience store. Although many speculations on the positive effects of experiences have been presented, few studies have provided empirical, quantified evidence for the link between store experiences and brand success. In consequence, research was needed to find out whether experience stores truly are so special. The purpose of this thesis was to investigate whether store experiences are capable of building brands and influencing store performance. For this purpose, empirical research was conducted in the Samsung Experience Store Helsinki. As main constructs of the study, store experience, brand equity, store performance, and product class involvement were measured, along with relevant background variables. Data was collected with an electronic survey from actual customers of the store, resulting in a sample of 131 respondents. Partial least squares structural equations modeling (PLS) was used for the analysis of the research model. Also, regression analysis was conducted to account for mediation and moderation effects. The results showed that store experiences do positively influence first, store performance, and second, separate dimensions of brand equity (that is, brand awareness, brand personality, and brand loyalty). Also, the effect of store experiences on store performance was found to be mediated by brand equity. Interestingly, customers’ product class involvement was detected to moderate the effect of store experience on store performance. That is, those who were highly involved with electronics had greater store experiences, and also displayed a stronger linkage between store experience and store performance. The results encourage marketers to continue with efforts to create great experiences for their customers. Experience stores can – and should be seen – as both powerful brand building tools and profitable sales channels. The creation of exceptional experiences can act as an important function of physical stores in the face of severe online competition.