887 resultados para Micromechanical Modeling - Finite-element Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the solution of the Hartree-Fock equations for the ground state of the H_2 molecule using the finite element method. Both the Hartree-Fock and the Poisson equations are solved with this method to an accuracy of 10^-8 using only 26 x 11 grid points in two dimensions. A 41 x 16 grid gives a new Hartree-Fock benchmark to ten-figure accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the Finite-Element-Method (FEM) in its application to quantum mechanical problems solving for diatomic molecules. Results for Hartree-Fock calculations of H_2 and Hartree-Fock-Slater calculations of molecules like N_2 and C0 have been obtained. The accuracy achieved with less then 5000 grid points for the total energies of these systems is 10_-8 a.u., which is demonstrated for N_2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the finite-element method in its application to solving quantum-mechanical problems for diatomic molecules. Results for Hartree-Fock calculations of H_2 and Hartree-Fock-Slater calculations for molecules like N_2 and CO are presented. The accuracy achieved with fewer than 5000 grid points for the total energies of these systems is 10^-8 a.u., which is about two orders of magnitude better than the accuracy of any other available method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducción: Teniendo en cuenta el envejecimiento de la población y la alta prevalencia de las lesiones del manguito rotador no es de extrañar que esta patología se convierta en un problema de salud pública. Se sabe que el aumento en el tamaño de una lesión se asocia con la aparición de síntomas, pero no existen herramientas que permitan predecir la evolución del tamaño de una lesión. Con esto en mente se desarrollo una línea de investigación para estudiar el mecanismo de falla que inicia con la realización de un modelo tridimensional de un tendón del musculo supraespinoso sano. Materiales y métodos: Se caracterizo el tendón del músculo supraespinoso aplicando cargas uniaxiales a 7 complejos humero-tendón-escápula cadavéricos. Con los datos obtenidos se alimento un modelo tridimensional lineal isotrópico analizando la concentración de esfuerzos de von Misses Resultados: Del ensayo uniaxial se obtuvieron curvas esfuerzo-deformación homogéneas para el 20% de la deformación inicial, obteniendo un modulo de Young (14.4±2.3MPa) y un coeficiente de Poisson (0.14) con una concentración de esfuerzos de en la zona central de la cara articular del tendón, cercana a su inserción. Encontramos una disminución del 5% en los esfuerzos al retirar el acromion del modelo. Conclusiones: Se caracterizó de manera exitosa y se obtuvo un modelo tridimensional del tendón. La distribución de esfuerzos es compatible con la reportada en la literatura. El acromion no tiene mayor importancia en la magnitud de los esfuerzos en nuestro modelo. Este es el punto de partida para estudiar el mecanismo de falla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study is to evaluate the effect of mass lumping on the dispersion properties of four finite-element velocity/surface-elevation pairs that are used to approximate the linear shallow-water equations. For each pair, the dispersion relation, obtained using the mass lumping technique, is computed and analysed for both gravity and Rossby waves. The dispersion relations are compared with those obtained for the consistent schemes (without lumping) and the continuous case. The P0-P1, RT0 and P-P1 pairs are shown to preserve good dispersive properties when the mass matrix is lumped. Test problems to simulate fast gravity and slow Rossby waves are in good agreement with the analytical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a finite element approximation of the sixth order nonlinear degenerate parabolic equation ut = ?.( b(u)? 2u), where generically b(u) := |u|? for any given ? ? (0,?). In addition to showing well-posedness of our approximation, we prove convergence in space dimensions d ? 3. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. Finally some numerical experiments in one and two space dimensions are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A one-dimensional water column model using the Mellor and Yamada level 2.5 parameterization of vertical turbulent fluxes is presented. The model equations are discretized with a mixed finite element scheme. Details of the finite element discrete equations are given and adaptive mesh refinement strategies are presented. The refinement criterion is an "a posteriori" error estimator based on stratification, shear and distance to surface. The model performances are assessed by studying the stress driven penetration of a turbulent layer into a stratified fluid. This example illustrates the ability of the presented model to follow some internal structures of the flow and paves the way for truly generalized vertical coordinates. (c) 2005 Elsevier Ltd. All rights reserved.