855 resultados para Micro Rotary Ultrasonic Machining


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Devido ao crescente uso dos aloenxertos nas cirurgias ortopédicas, há a necessidade do conhecimento de suas características biomecânicas ao longo do tempo de preservação. O presente trabalho consistiu na análise da força de resistência à micro-tração de amostras de ossos corticais de coelho preservadas em diversos meios por até 180 dias e a fresco. Os resultados revelaram que a resistência e o tempo de preservação apresentaram uma relação inversamente proporcional, significando que, quanto maior o tempo de preservação, menor a resistência física avaliada no ensaio biomecânico de resistência à micro-tração. Dos meios utilizados, a glicerina apresentou menores valores quanto ao teste de resistência, demonstrando, após 30 dias de preservação, apenas 24,58% da força presente no osso a fresco e, aos 180 dias, 1,76%. As amostras submetidas à autoclavagem também demonstraram baixos valores ao final do experimento, quando permaneceram com apenas 12,31% da força presente no osso a fresco. Os ossos preservados em plasma homólogo, líquido de dakin e aqueles criopreservados apresentaram os melhores índices de resistência ao final do experimento, permanecendo, respectivamente, com 82,47; 70,34 e 66,72% da força máxima quando comparados com a resistência dos ossos frescos. Concluiu-se que a escolha do método e o tempo de preservação interferiu diretamente na biomecânica dos ossos corticais, promovendo a diminuição da capacidade de resistência à tração ao longo do período de preservação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A substituição de parte do tecido ósseo se faz necessária muitas vezes na rotina cirúrgica, seja em função de fraturas, neoplasias ósseas ou enfermidades ortopédicas que acarretem em perda óssea. Neste sentido, têm se buscado biomateriais capazes de promover esta substituição, evitando o uso de enxertos ou transplantes ósseos. O objetivo deste trabalho foi avaliar a capacidade osteoregenerativa de biomateriais em diferentes composições, em tíbias de ovinos. Foram utilizadas oito ovelhas mestiças texel, com 12 meses de idade e peso médio de 28,5±7,4kg. Após adequada preparação anestésica e cirúrgica, foram produzidos três defeitos ósseos na diáfise das tíbias em sua face medial, totalizando seis defeitos de 6mm cada, sendo que quatro foram preenchidos por biomateriais, e dois por fragmentos ósseos retirados do próprio animal (autocontrole). Os materiais implantados foram: hidroxiapatita (HA), tricálcio fosfato-β (TCP-β), hidroxiapatita/tricálcio fosfato-b 60/40 (HA/TCP-b 60/40) e o nanocompósito hidroxiapatita/alumina a 5% (HA/Al2O3 a 5%). Os animais foram alocados em dois grupos: Grupo 60 (n=04), em que os animais foram eutanasiados após 60 dias da colocação dos implantes e Grupo 90 (n=04), em que a eutanásia ocorreu 90 dias após a colocação dos implantes. Foram realizadas radiografias nos períodos pré-operatório, imediatamente após o procedimento e aos 30, 60 e 90 dias de pós-operatório, a fim de excluir qualquer alteração prévia ou complicação pós-operatória, capaz de comprometer o estudo. Após a eutanásia, foram coletadas as tíbias para avaliação macro e microscópica, por meio de microscopia eletrônica de varredura (MEV) e microscopia óptica. Os resultados encontrados mostraram uma boa capacidade de neoformação óssea e uma lenta absorção da HA. O TCP-β foi rapidamente absorvido e apresentou boa capacidade osteoindutiva e osteocondutiva, sendo observada neoformação óssea no interior dos grânulos deste biomaterial. O composto bifásico HA/TCP-β (60/40) apresentou o melhor resultado a longo prazo, devido ao melhor controle na solubilização e liberação dos íons cálcio e fosfatos para o meio biológico durante o processo de neoformação óssea. O biomaterial nanocompósito HA/Al2O3 a 5% não apresentou resultados promissores neste estudo, e sugerem-se novas pesquisas a fim de investigar melhor o potencial e aplicabilidade deste novo biomaterial. Conclui-se que a hidroxiapatita, o tricálcio fosfato-β e a associação HA/TCP-β (60/40) apresentam excelente capacidade de reparação óssea, podendo ser utilizados como substitutos ósseos; a associação HA/TCP-β (60/40) é o melhor dentre os biomateriais estudados, pois apresenta velocidade de absorção intermediária em relação à HA e ao TCP-β isolados, fornecendo ainda uma sustentação adequada ao tecido neoformado; o biomaterial HA/Al2O3 5% se mostrou incompatível, provocando reação de rejeição por parte do hospedeiro e com insignificante formação de tecido ósseo, sugerindo novas pesquisas acerca deste material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes an integrated micro/macro mechanical study of the elastic-viscoplastic behavior of unidirectional metal matrix composites (MMC). The micromechanical analysis of the elastic moduli is based on the Composites Cylinder Assemblage model (CCA) with comparisons also draw with a Representative Unit Cell (RUC) technique. These "homogenization" techniques are later incorporated into the Vanishing Fiber Diameter (VFD) model and a new formulation is proposed. The concept of a smeared element procedure is employed in conjunction with two different versions of the Bodner and Partom elastic-viscoplastic constitutive model for the associated macroscopic analysis. The formulations developed are also compared against experimental and analytical results available in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulation of machining processes can be traced back to the early seventies when finite element models for continuous chip formation were proposed. The advent of fast computers and development of new techniques to model large plastic deformations have favoured machining simulation. Relevant aspects of finite element simulation of machining processes are discussed in this paper, such as solution methods, material models, thermo-mechanical coupling, friction models, chip separation and breakage strategies and meshing/re-meshing strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade a lot has been discussed about the suitability of using cutting fluid in abundance to cool and lubricate machining processes. The use of cutting fluid generally causes economy of tools and it becomes easier to keep tight tolerances and to maintain workpiece surface properties without damages. In the other hand, it brings also some problems, like fluid residuals and human diseases. Because of them some alternatives has been sought to minimise or even avoid the use of cutting fluid in machining operations. Some of these alternatives are dry cutting and cutting with minimum quantity of fluid (MQF). The main goal of this work is to discuss these tendencies. Therefore, topics like kinds and methods of applications of modern cutting fluids and what are new in this area will unavoidably be considered. MQF and dry cutting techniques, their applications and where it is not possible to apply them will also be focused. To exemplify the topics, this work will describe some of the researches been developed in two important Brazilian Universities: State University of Campinas (UNICAMP) and Federal University of Uberlândia (UFU).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of high-strength aluminium alloys as material for injection molding tools to produce small and medium batches of plastic products as well as prototyping molds is becoming of increasing demand by the tooling industry. These alloys are replacing the traditional use of steel in the cases above because they offer many advantages such as very high thermal conductivity associated with good corrosion and wear resistance presenting good machinability in milling and electrical discharge machining operations. Unfortunately there is little technological knowledge on the Electrical Discharge Machining (EDM) of high-strength aluminium alloys, especially about the AMP 8000 alloy. The duty factor, which means the ratio between pulse duration and pulse cycle time exerts an important role on the performance of EDM. This work has carried out an experimental study on the variation of the duty factor in order to analyze its influence on material removal rate and volumetric relative wear under roughing conditions of EDM process. The results showed that high values of duty factor are possible to be applied without bringing instability into the EDM process and with improvement of material removal rate and volumetric relative wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrokinetics has emerged as a potential technique for in situ soil remediation and especially unique because of the ability to work in low permeability soil. In electrokinetic remediation, non-polar contaminants like most organic compounds are transported primarily by electroosmosis, thus the process is effective only if the contaminants are soluble in pore fluid. Therefore, enhancement is needed to improve mobility of these hydrophobic compounds, which tend to adsorb strongly to the soil. On the other hand, as a novel and rapidly growing science, the applications of ultrasound in environmental technology hold a promising future. Compared to conventional methods, ultrasonication can bring several benefits such as environmental friendliness (no toxic chemical are used or produced), low cost, and compact instrumentation. It also can be applied onsite. Ultrasonic energy applied into contaminated soils can increase desorption and mobilization of contaminants and porosity and permeability of soil through developing of cavitation. The research investigated the coupling effect of the combination of these two techniques, electrokinetics and ultrasonication, in persistent organic pollutant removal from contaminated low permeability clayey soil (with kaolin as a model medium). The preliminary study checked feasibility of ultrasonic treatment of kaolin highly contaminated by persistent organic pollutants (POPs). The laboratory experiments were conducted in various conditions (moisture, frequency, power, duration time, initial concentration) to examine the effects of these parameters on the treatment process. Experimental results showed that ultrasonication has a potential to remove POPs, although the removal efficiencies were not high with short duration time. The study also suggested intermittent ultrasonication over longer time as an effective means to increase the removal efficiencies. Then, experiments were conducted to compare the performances among electrokinetic process alone and electrokinetic processes combined with surfactant addition and mainly with ultrasonication, in designed cylinders (with filtercloth separating central part and electrolyte parts) and in open pans. Combined electrokinetic and ultrasonic treatment did prove positive coupling effect compared to each single process alone, though the level of enhancement is not very significant. The assistance of ultrasound in electrokinetic remediation can help reduce POPs from clayey soil by improving the mobility of hydrophobic organic compounds and degrading these contaminants through pyrolysis and oxidation. Ultrasonication also sustains higher current and increases electroosmotic flow. Initial contaminant concentration is an essential input parameter that can affect the removal effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic attenuation coefficient, wave propagation speed and integrated backscatter coefficient (IBC) of human coronary arteries were measured in vitro over the -6 dB frequency bandwidth (36 to 67 MHz) of a focused ultrasound transducer (50 MHz, focal distance 5.7 mm, f/number 1.7). Corrections were made for diffraction effects. Normal and diseased coronary artery sub-samples (N = 38) were obtained from 10 individuals at autopsy. The measured mean ± SD of the wave speed (average over the entire vessel wall thickness) was 1581.04 ± 53.88 m/s. At 50 MHz, the average attenuation coefficient was 4.99 ± 1.33 dB/mm with a frequency dependence term of 1.55 ± 0.18 determined over the 36- to 67-MHz frequency range. The IBC values were: 17.42 ± 13.02 (sr.m)-1 for thickened intima, 11.35 ± 6.54 (sr.m)-1 for fibrotic intima, 39.93 ± 50.95 (sr.m)-1 for plaque, 4.26 ± 2.34 (sr.m)-1 for foam cells, 5.12 ± 5.85 (sr.m)-1 for media and 21.26 ± 31.77 (sr.m)-1 for adventitia layers. The IBC results indicate the possibility for ultrasound characterization of human coronary artery wall tissue layer, including the situations of diseased arteries with the presence of thickened intima, fibrotic intima and plaque. The mean IBC normalized with respect to the mean IBC of the media layer seems promising for use as a parameter to differentiate a plaque or a thickened intima from a fibrotic intima.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to manufacture metal parts layer by layer by assist of laser beam. The development of the technology from building just prototype parts to functional parts is due to design flexibility. And also possibility to manufacture tailored and optimised components in terms of performance and strength to weight ratio of final parts. The study of energy and raw material consumption in LAM is essential as it might facilitate the adoption and usage of the technique in manufacturing industries. The objective this thesis was find the impact of LAM on environmental and economic aspects and to conduct life cycle inventory of CNC machining and LAM in terms of energy and raw material consumption at production phases. Literature overview in this thesis include sustainability issues in manufacturing industries with focus on environmental and economic aspects. Also life cycle assessment and its applicability in manufacturing industry were studied. UPLCI-CO2PE! Initiative was identified as mostly applied exiting methodology to conduct LCI analysis in discrete manufacturing process like LAM. Many of the reviewed literature had focused to PBF of polymeric material and only few had considered metallic materials. The studies that had included metallic materials had only measured input and output energy or materials of the process and compared to different AM systems without comparing to any competitive process. Neither did any include effect of process variation when building metallic parts with LAM. Experimental testing were carried out to make dissimilar samples with CNC machining and LAM in this thesis. Test samples were designed to include part complexity and weight reductions. PUMA 2500Y lathe machine was used in the CNC machining whereas a modified research machine representing EOSINT M-series was used for the LAM. The raw material used for making the test pieces were stainless steel 316L bar (CNC machined parts) and stainless steel 316L powder (LAM built parts). An analysis of power, time, and the energy consumed in each of the manufacturing processes on production phase showed that LAM utilises more energy than CNC machining. The high energy consumption was as result of duration of production. Energy consumption profiles in CNC machining showed fluctuations with high and low power ranges. LAM energy usage within specific mode (standby, heating, process, sawing) remained relatively constant through the production. CNC machining was limited in terms of manufacturing freedom as it was not possible to manufacture all the designed sample by machining. And the one which was possible was aided with large amount of material removed as waste. Planning phase in LAM was shorter than in CNC machining as the latter required many preparation steps. Specific energy consumption (SEC) were estimated in LAM based on the practical results and assumed platform utilisation. The estimated platform utilisation showed SEC could reduce when more parts were placed in one build than it was in with the empirical results in this thesis (six parts).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays the energy efficiency has become one of the most concerned topics. Compressors are the equipment, which is very common in industry. Moreover, they tend to operate during long cycles and therefore even small decrease in power consumption can significantly reduce electricity costs during the year. And therefore it is important to investigate ways of increasing the energy efficiency of the compressors. In the thesis rotary screw compressor alongside with different control approaches is described. Simulation models for various control types of rotary screw compressor are developed. Analysis of laboratory equipment is conducted and results are compared with simulation. Suggestions of the real laboratory equipment improvement are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-ribonucleic acids (microRNAs) are small molecules containing 20-23 nucleotides. Despite their small size, it is likely that almost every cellular process is regulated by them. Moreover, aberrant microRNA expression has been involved in the development of various diseases, including cancer. Although many data are available about the role of microRNAs in various lymphoproliferative disorders, their impact on the development of acute lymphoblastic leukemia of T-cell progenitors is largely unknown. In this review, we present recent information about how specific microRNAs are expressed and regulated during malignant T-lymphopoiesis and about their role during normal hematopoiesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present review, the phenomenon of ultrasonic vocalization in rats will be outlined, including the three classes of vocalizations, namely 40-kHz calls of pups, and 22- and 50-kHz calls of juvenile and adult rats, their general relevance to behavioral neuroscience, and their special relevance to research on anxiety, fear, and defense mechanisms. Here, the emphasis will be placed on 40- and 22-kHz calls, since they are typical for various situations with aversive properties. Among other topics, we will discuss whether such behavioral signals can index a certain affective state, and how these signals can be used in social neuroscience, especially with respect to communication. Furthermore, we will address the phenomenon of inter-individual variability in ultrasonic calling and what we currently know about the mechanisms, which may determine such variability. Finally, we will address the current knowledge on the neural and pharmacological mechanisms underlying 22-kHz ultrasonic vocalization, which show a substantial overlap with mechanisms known from other research on fear and anxiety, such as those involving the periaqueductal gray or the amygdala.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se estudia la estructura micrográfica del grano de seis variedades de avena con la finalidad de su caracterización, para desarrollar parámetros de identificación en alimentos elaborados con la misma y, consecuentemente, determinar su autenticidad, contribuyendo a optimizar la producción, la comercialización y el consumo del cereal y sus derivados. El diseño experimental consistió en el estudio micrográfico de los granos vestidos y desnudos efectuando un análisis morfológico mediante observación con lupa binocular y fotografía, ultraestructural utilizando microscopio electrónico de barrido, micrográfico y micrométrico, empleando el sistema de video microscopia digitalizado y software adecuado. Dada su variabilidad natural, los estudios se efectuaron durante tres temporadas consecutivas sobre muestras cosechadas de variedades procedentes de cultivos de semillas certificadas, y sobre alimentos procesados (avena arrollada y salvado de avena comerciales). Los resultados consistieron en diseños micrográficos, y en valores micrométricos de gránulos de almidón relacionados, además, en modelos matemáticos. En todos los casos se validó estadísticamente. Como parámetros micrográficos de caracterización se seleccionaron las estructuras diferenciales, que revelaron una presencia constante en el vegetal y resistieron los tratamientos tecnológicos, y las características y dimensiones del almidón.