448 resultados para Maze


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relationships were examined between spatial learning and hippocampal concentrations of the α, β2, and γ isoforms of protein kinase C (PKC), an enzyme implicated in neuronal plasticity and memory formation. Concentrations of PKC were determined for individual 6-month-old (n = 13) and 24-month-old (n = 27) male Long–Evans rats trained in the water maze on a standard place-learning task and a transfer task designed for rapid acquisition. The results showed significant relationships between spatial learning and the amount of PKC among individual subjects, and those relationships differed according to age, isoform, and subcellular fraction. Among 6-month-old rats, those with the best spatial memory were those with the highest concentrations of PKCγ in the particulate fraction and of PKCβ2 in the soluble fraction. Aged rats had increased hippocampal PKCγ concentrations in both subcellular fractions in comparison with young rats, and memory impairment was correlated with higher PKCγ concentrations in the soluble fraction. No age difference or correlations with behavior were found for concentrations of PKCγ in a comparison structure, the neostriatum, or for PKCα in the hippocampus. Relationships between spatial learning and hippocampal concentrations of calcium-dependent PKC are isoform-specific. Moreover, age-related spatial memory impairment is associated with altered subcellular concentrations of PKCγ and may be indicative of deficient signal transduction and neuronal plasticity in the hippocampal formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protracted administration of diazepam elicits tolerance, whereas discontinuation of treatment results in signs of dependence. Tolerance to the anticonvulsant action of diazepam is present in an early phase (6, 24, and 36 h) but disappears in a late phase (72–96 h) of withdrawal. In contrast, signs of dependence such as decrease in open-arm entries on an elevated plus-maze and increased susceptibility to pentylenetetrazol-induced seizures were apparent 96 h (but not 12, 24, or 48 h) after diazepam withdrawal. During the first 72 h of withdrawal, tolerance is associated with changes in the expression of GABAA (γ-aminobutyric acid type A) receptor subunits (decrease in γ2 and α1; increase in α5) and with an increase of mRNA expression of the most abundant form of glutamic acid decarboxylase (GAD), GAD67. In contrast, dl-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor GluR1 subunit mRNA and cognate protein, which are normal during the early phase of diazepam withdrawal, increase by approximately 30% in cortex and hippocampus in association with the appearance of signs of dependence 96 h after diazepam withdrawal. Immunohistochemical studies of GluR1 subunit expression with gold-immunolabeling technique reveal that the increase of GluR1 subunit protein is localized to layer V pyramidal neurons and their apical dendrites in the cortex, and to pyramidal neurons and in their dendritic fields in hippocampus. The results suggest an involvement of GABA-mediated processes in the development and maintenance of tolerance to diazepam, whereas excitatory amino acid-related processes (presumably via AMPA receptors) may be involved in the expression of signs of dependence after withdrawal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unilateral intrahippocampal injections of tetrodotoxin were used to temporarily inactivate one hippocampus during specific phases of training in an active allothetic place avoidance task. The rat was required to use landmarks in the room to avoid a room-defined sector of a slowly rotating circular arena. The continuous rotation dissociated room cues from arena cues and moved the arena surface through a part of the room in which foot-shock was delivered. The rat had to move away from the shock zone to prevent being transported there by the rotation. Unilateral hippocampal inactivations profoundly impaired acquisition and retrieval of the allothetic place avoidance. Posttraining unilateral hippocampal inactivation also impaired performance in subsequent sessions. This allothetic place avoidance task seems more sensitive to hippocampal disruption than the standard water maze task because the same unilateral hippocampal inactivation does not impair performance of the variable-start, fixed hidden goal task after procedural training. The results suggest that the hippocampus not only encodes allothetic relationships amongst landmarks, it also organizes perceived allothetic stimuli into systems of mutually stable coordinates. The latter function apparently requires greater hippocampal integrity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of practice on the functional anatomy observed in two different tasks, a verbal and a motor task, are reviewed in this paper. In the first, people practiced a verbal production task, generating an appropriate verb in response to a visually presented noun. Both practiced and unpracticed conditions utilized common regions such as visual and motor cortex. However, there was a set of regions that was affected by practice. Practice produced a shift in activity from left frontal, anterior cingulate, and right cerebellar hemisphere to activity in Sylvian-insular cortex. Similar changes were also observed in the second task, a task in a very different domain, namely the tracing of a maze. Some areas were significantly more activated during initial unskilled performance (right premotor and parietal cortex and left cerebellar hemisphere); a different region (medial frontal cortex, “supplementary motor area”) showed greater activity during skilled performance conditions. Activations were also found in regions that most likely control movement execution irrespective of skill level (e.g., primary motor cortex was related to velocity of movement). One way of interpreting these results is in a “scaffolding-storage” framework. For unskilled, effortful performance, a scaffolding set of regions is used to cope with novel task demands. Following practice, a different set of regions is used, possibly representing storage of particular associations or capabilities that allow for skilled performance. The specific regions used for scaffolding and storage appear to be task dependent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hippocampal neuron loss is widely viewed as a hallmark of normal aging. Moreover, neuronal degeneration is thought to contribute directly to age-related deficits in learning and memory supported by the hippocampus. By taking advantage of improved methods for quantifying neuron number, the present study reports evidence challenging these long-standing concepts. The status of hippocampal-dependent spatial learning was evaluated in young and aged Long-Evans rats using the Morris water maze, and the total number of neurons in the principal cell layers of the dentate gyrus and hippocampus was quantified according to the optical fractionator technique. For each of the hippocampal fields, neuron number was preserved in the aged subjects as a group and in aged individuals with documented learning and memory deficits indicative of hippocampal dysfunction. The findings demonstrate that hippocampal neuronal degeneration is not an inevitable consequence of normal aging and that a loss of principal neurons in the hippocampus fails to account for age-related learning and memory impairment. The observed preservation of neuron number represents an essential foundation for identifying the neurobiological effects of hippocampal aging that account for cognitive decline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nerve growth factor (NGF) stimulates functional recovery from cognitive impairments associated with aging, either when administered as a purified protein or by means of gene transfer to the basal forebrain. Because gene transfer procedures need to be tested in long-term experimental paradigms to assess their in vivo efficiency, we have used ex vivo experimental gene therapy to provide local delivery of NGF to the aged rat brain over a period of 2.5 months by transplanting immortalized central nervous system-derived neural stem cells genetically engineered to secrete NGF. By grafting them at two independent locations in the basal forebrain, medial septum and nucleus basalis magnocellularis, we show that functional recovery as assessed in the Morris water maze can be achieved by neurotrophic stimulation of any of these cholinergic cell groups. Moreover, the cholinergic neurons in the grafted regions showed a hypertrophic response resulting in a reversal of the age-associated atrophy seen in the learning-impaired aged control rats. Long-term expression of the transgene lead to an increased NGF tissue content (as determined by NGF-ELISA) in the transplanted regions up to at least 10 weeks after grafting. We conclude that the gene transfer procedure used here is efficient to provide the brain with a long-lasting local supply of exogenous NGF, induces long-term functional recovery of cognitive functions, and that independent trophic stimulation of the medial septum or nucleus basalis magnocellularis has similar consequences at the behavioral level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Addiction modules" consist of two genes. In most of them the product of one is long lived and toxic while the product of the second is short lived and antagonizes the toxic effect; so far, they have been described mainly in a number of prokaryotic extrachromosomal elements responsible for the postsegregational killing effect. Here we show that the chromosomal genes mazE and mazF, located in the Escherichia coli rel operon, have all of the properties required for an addiction module. Furthermore, the expression of mazEF is regulated by the cellular level of guanosine [corrected] 3',5'-bispyrophosphate, the product of the RelA protein under amino acid starvation. These properties suggest that the mazEF system may be responsible for programmed cell death in E. coli and thus may have a role in the physiology of starvation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several lines of evidence indicate that a modest increase in circulating glucose levels enhances memory. One mechanism underlying glucose effects on memory may be an increase in acetylcholine (ACh) release. The present experiment determined whether enhancement of spontaneous alternation performance by systemic glucose treatment is related to an increase in hippocampal ACh output. Samples of extracellular ACh were assessed at 12-min intervals using in vivo microdialysis with HPLC-EC. Twenty-four minutes after an intraperitoneal injection of saline or glucose (100, 250, or 1000 mg/kg), rats were tested in a four-arm cross maze for spontaneous alternation behavior combined with microdialysis collection. Glucose at 250 mg/kg, but not 100 or 1000 mg/kg, produced an increase in spontaneous alternation scores (69.5%) and ACh output (121.5% versus baseline) compared to alternation scores (44.7%) and ACh output (58.9% versus baseline) of saline controls. The glucose-induced increase in alternation scores and ACh output was not secondary to changes in locomotor activity. Saline and glucose (100-1000 mg/kg) treatment had no effect on hippocampal ACh output when rats remained in the holding chamber. These findings suggest that glucose may enhance memory by directly or indirectly increasing the release of ACh. The results also indicate that hippocampal ACh release is increased in rats performing a spatial task. Moreover, because glucose enhanced ACh output only during behavioral testing, circulating glucose may modulate ACh release only under conditions in which cholinergic cells are activated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypothesis that age-associated impairment of cognitive and motor functions is due to oxidative molecular damage was tested in the mouse. In a blind study, senescent mice (aged 22 months) were subjected to a battery of behavioral tests for motor and cognitive functions and subsequently assayed for oxidative molecular damage as assessed by protein carbonyl concentration in different regions of the brain. The degree of age-related impairment in each mouse was determined by comparison to a reference group of young mice (aged 4 months) tested concurrently on the behavioral battery. The age-related loss of ability to perform a spatial swim maze task was found to be positively correlated with oxidative molecular damage in the cerebral cortex, whereas age-related loss of motor coordination was correlated with oxidative molecular damage within the cerebellum. These results support the view that oxidative stress is a causal factor in brain senescence. Furthermore, the findings suggest that age-related declines of cognitive and motor performance progress independently, and involve oxidative molecular damage within different regions of the brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marked increases in intracellular calcium may play a role in mediating cellular dysfunction and death following central nervous system trauma, in part through the activation of the calcium-dependent neutral protease calpain. In this study, we evaluated the effect of the calpain inhibitor AK295 [Z-Leu-aminobutyric acid-CONH(CH2)3-morpholine] on cognitive and motor deficits following lateral fluid percussion brain injury in rats. Before injury, male Sprague-Dawley rats (350-425 g) were trained to perform a beam-walking task and to learn a cognitive test using a Morris water maze paradigm. Animals were subjected to fluid percussion injury (2.2-2.4 atm; 1 atm = 101.3 kPa) and, beginning at 15 min postinjury, received a continuous intraarterial infusion of AK295 (120-140 mg/kg, n = 15) or vehicle (n= 16) for 48 hr. Sham (uninjured) animals received either drug (n = 5) or vehicle (n = 10). Animals were evaluated for neurobehavioral motor function at 48 hr and 7 days postinjury and were tested in the Morris water maze to evaluate memory retention at 7 days postinjury. At 48 hr, both vehicle- and AK295-treated injured animals showed significant neuromotor deficits (P< 0.005). At 7 days, injured animals that received vehicle continued to exhibit significant motor dysfunction (P< 0.01). However, brain-injured, AK295-treated animals showed markedly improved motor scores (P<0.02), which were not significantly different from sham (uninjured) animals. Vehicle-treated, injured animals demonstrated a profound cognitive deficit (P< 0.001), which was significantly attenuated by AK295 treatment (P< 0.05). To our knowledge, this study is the first to use a calpain inhibitor following brain trauma and suggests that calpain plays a role in the posttraumatic events underlying memory and neuromotor dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chloroethylnitrosourea (CNU) alkylating agents are commonly used for cancer chemotherapy, but their usefulness is limited by severe bone marrow toxicity that causes the cumulative depletion of all hematopoietic lineages (pancytopenia). Bone marrow CNU sensitivity is probably due to the inefficient repair of CNU-induced DNA damage; relative to other tissues, bone marrow cells express extremely low levels of the O6-methylguanine DNA methyltransferase (MGMT) protein that repairs cytotoxic O6-chloroethylguanine DNA lesions. Using a simplified recombinant retroviral vector expressing the human MGMT gene under control of the phosphoglycerate kinase promoter (PGK-MGMT) we increased the capacity of murine bone marrow-derived cells to repair CNU-induced DNA damage. Stable reconstitution of mouse bone marrow with genetically modified, MGMT-expressing hematopoietic stem cells conferred considerable resistance to the cytotoxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a CNU commonly used for chemotherapy. Bone marrow harvested from mice transplanted with PGK-MGMT-transduced cells showed extensive in vitro BCNU resistance. Moreover, MGMT expression in mouse bone marrow conferred in vivo resistance to BCNU-induced pancytopenia and significantly reduced BCNU-induced mortality due to bone marrow hypoplasia. These data demonstrate that increased DNA alkylation repair in primitive hematopoietic stem cells confers multilineage protection from the myelosuppressive effects of BCNU and suggest a possible approach to protecting cancer patients from CNU chemotherapy-related toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have determined the volume and location of hippocampal tissue required for normal acquisition of a spatial memory task. Ibotenic acid was used to make bilateral symmetric lesions of 20-100% of hippocampal volume. Even a small transverse block (minislab) of the hippocampus (down to 26% of the total) could support spatial learning in a water maze, provided it was at the septal (dorsal) pole of the hippocampus. Lesions of the septal pole, leaving 60% of the hippocampi intact, caused a learning deficit, although normal electrophysiological responses, synaptic plasticity, and preserved acetylcholinesterase staining argue for adequate function of the remaining tissue. Thus, with an otherwise normal brain, hippocampal-dependent spatial learning only requires a minislab of dorsal hippocampal tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The beta-amyloid precursor protein (beta-APP), from which the beta-A4 peptide is derived, is considered to be central to the pathogenesis of Alzheimer disease (AD). Transgenic mice expressing the 751-amino acid isoform of human beta-APP (beta-APP751) have been shown to develop early AD-like histopathology with diffuse deposits of beta-A4 and aberrant tau protein expression in the brain, particularly in the hippocampus, cortex, and amygdala. We now report that beta-APP751 transgenic mice exhibit age-dependent deficits in spatial learning in a water-maze task and in spontaneous alternation in a Y maze. These deficits were mild or absent in 6-month-old transgenic mice but were severe in 12-month-old transgenic mice compared to age-matched wild-type control mice. No other behavioral abnormalities were observed. These mice therefore model the progressive learning and memory impairment that is a cardinal feature of AD. These results provide evidence for a relationship between abnormal expression of beta-APP and cognitive impairments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A metacognição é processo conceituado como o julgamento que um organismo (humano ou não humano) faz sobre seu próprio saber ou não saber. Há relatos de pesquisas sobre esse processo com seres humanos e diversas espécies de não humanos. Poucos estudos, porém, discutem a ocorrência de metacognição em ratos, e os resultados são controversos, em função de questionamentos sobre os procedimentos experimentais empregados. Este estudo teve o objetivo de investigar o efeito da manipulação de diferentes proporções de reforço produzidas em duas alternativas, sendo uma probabilística e outra com reforçamento contínuo, sobre o desempenho de ratos em uma tarefa de discriminação de diferentes durações de estímulos sonoros. O procedimento empregado é uma adaptação do utilizado por Foote e Crystal (2007), que investigou a ocorrência de metacognição em ratos. Foram utilizados cinco ratos machos, da linhagem Wistar (Rattus norvegicus) mantidos a 80% de seu peso ad libitum. O aparato utilizado foi um labirinto em Ey. O procedimento consistiu de quatro fases: 1) Treino exploratório no braço em Y, no qual o animal foi exposto a alternativas que continham seis pelotas de ração; 2) Treino de discriminação de estímulos sonoros, no qual foram treinadas duas discriminações condicionais com duas durações de estímulo sonoro, uma curta (2s), e uma longa (8s), cada uma correlacionada com a escolha de uma das portas do braço em Y; 3) Treino exploratório no braço em I, no qual os animais foram expostos a uma alternativa livre, que continha três pelotas de ração; e 4) Fase de Teste, na qual foram apresentadas diferentes durações de som (2.00, 2.44, 2.97, 3.62, 4.42, 5.38, 6.56 e 8.00s), a partir das quais o animal poderia escolher entre o braço em Y (fazer o teste), e receber seis pelotas de ração caso escolhesse a porta correta (correlacionada à duração curta ou longa), ou escolher a alternativa de recusa do teste, produzindo, com certeza, a quantidade de ração estabelecida pela condição em vigor. Foi analisada a porcentagem de escolhas realizadas pelos animais nos braços Y e I em cada condição, assim como a relação entre a porcentagem de acertos e erros nos testes e recusa, para cada duração de som. Todos os sujeitos atingiram o critério de aprendizagem estabelecido na fase de treino. Na fase de testes, observou-se que o som deixou de exercer controle sobre a resposta de escolha de todos os animais. À medida que a proporção de reforço variou na alternativa de recusa, os animais alteraram o padrão de escolha, de propensão para aversão ao risco, de acordo com a condição em vigor. A escolha por uma alternativa não se mostrou sob controle da acurácia dos animais em discriminar as durações dos estímulos apresentados, mas sim da proporção e probabilidade do reforço em cada alternativa. Discute-se a necessidade de se recorrer ao conceito de metacognição para descrever o desempenho dos animais em tarefas como a empregada no presente estudo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste estudo foi investigar os efeitos de dois modelos experimentais de dietas hipercalóricas em comportamentos de ansiedade, processos de aprendizagem e memória e alterações metabólicas. Os animais foram divididos em seis grupos experimentais, de acordo com a condição nutricional. 1) Controle (C); 2) Dieta de Cafeteria (DC); 3) Dieta Hiperlipídica (DH); 4) Controle AIN-93 (C/AIN-93); 5) Dieta de Cafeteria AIN-93 (DC/AIN-93), e 6) Dieta Hiperlipídica AIN-93 (DH/AIN-93). Posteriormente, os grupos foram subdivididos em dois grupos independentes, conforme a tarefa à qual foram submetidos. Pesagens foram realizadas semanalmente até os 98 dias de vida; foram verificados os pesos do fígado, do coração e o peso de tecido adiposo retroperitoneal e epididimal e foram realizadas dosagens de glicose, triglicérides, TGO e TGP no soro e gordura total, colesterol total e triglicérides no fígado. Os testes utilizados: Labirinto em T Elevado (LTE), Caixa Claro/Escuro e Labirinto Aquático de Morris (LAM). Os resultados de peso corporal, os dados comportamentais do LAM, do LTE e os dados de peso dos tecidos extraídos no dia do sacrifício e as análises bioquímicas foram submetidos a uma Análise de Variância (ANOVA). Quando apropriado, foi utilizado o teste de comparações múltiplas de Newman-Keuls (p< 0,05). Os dados comportamentais do teste claro/escuro foram submetidos ao teste t-Student (p< 0,05). Animais tratados com dieta hiperlipídica apresentaram maiores medidas de peso e ganho de peso comparados aos animais controle e dieta de cafeteria, tratados com pellet e com dieta AIN-93. Animais DH1, DC1, DH1 AIN-93, DH2 AIN-93 e DH2 apresentaram maior peso no dia do sacrifício. Animais DH1, DH1 AIN-93, DH2 e DH2 AIN-93 apresentaram maior acúmulo dos tecidos adiposos retroperitoneal e epididimal. Animais DH1 AIN-93 e DC2 AIN-93 apresentaram maiores níveis de glicose. Animais C2, DH2 e DC2 apresentaram maiores níveis de triglicérides. Animais DH1 e C1 apresentaram menores valores de TGO. Animais C2 e C2 AIN-93 apresentaram maiores níveis de TGO. Animais C1, DH1, C2 e DH2 apresentaram maiores níveis de TGP. Animais DH1 AIN-93, DH1, DH2 e DH2 AIN-93 apresentaram maiores valores de gordura total no fígado. Animais DH1 AIN-93 e DH2 apresentaram maiores níveis de colesterol no fígado. Animais DH1, DC1, DH2 e DH2 AIN-93 apresentaram maiores níveis de triglicérides no fígado. Com relação ao consumo alimentar, animais DH apresentaram maior consumo calórico e maior consumo lipídico quando comparados aos animais C e DC, com ração em pellet ou dieta AIN-93. Com relação ao LTE, não foram verificadas diferenças nas esquivas e na fuga. Animais DC1, DH1 e DH1 AIN-93 apresentaram menores níveis de ansiedade verificados a partir dos dados do teste da caixa claro-escuro. Animais DC2 AIN-93 apresentaram pior desempenho em tarefa de memória. Os dados obtidos a partir deste estudo demonstraram que as dietas utilizadas foram capazes de acarretar ganho de peso, acúmulo de tecido adiposo, alterações metabólicas, diminuição da ansiedade nos animais e pior desempenho em uma tarefa de memória em um dos grupos nutricionais.