941 resultados para Maximum likelihood – Expectation maximization (ML-EM)
Resumo:
Human papillomavirus type 6 (HPV6) is the major etiological agent of anogenital warts and laryngeal papillomas and has been included in both the quadrivalent and nonavalent prophylactic HPV vaccines. This study investigated the global genomic diversity of HPV6, using 724 isolates and 190 complete genomes from six continents, and the association of HPV6 genomic variants with geographical location, anatomical site of infection/disease, and gender. Initially, a 2,800-bp E5a-E5b-L1-LCR fragment was sequenced from 492/530 (92.8%) HPV6-positive samples collected for this study. Among them, 130 exhibited at least one single nucleotide polymorphism (SNP), indel, or amino acid change in the E5a-E5b-L1-LCR fragment and were sequenced in full. A global alignment and maximum likelihood tree of 190 complete HPV6 genomes (130 fully sequenced in this study and 60 obtained from sequence repositories) revealed two variant lineages, A and B, and five B sublineages: B1, B2, B3, B4, and B5. HPV6 (sub)lineage-specific SNPs and a 960-bp representative region for whole-genome-based phylogenetic clustering within the L2 open reading frame were identified. Multivariate logistic regression analysis revealed that lineage B predominated globally. Sublineage B3 was more common in Africa and North and South America, and lineage A was more common in Asia. Sublineages B1 and B3 were associated with anogenital infections, indicating a potential lesion-specific predilection of some HPV6 sublineages. Females had higher odds for infection with sublineage B3 than males. In conclusion, a global HPV6 phylogenetic analysis revealed the existence of two variant lineages and five sublineages, showing some degree of ethnogeographic, gender, and/or disease predilection in their distribution. IMPORTANCE: This study established the largest database of globally circulating HPV6 genomic variants and contributed a total of 130 new, complete HPV6 genome sequences to available sequence repositories. Two HPV6 variant lineages and five sublineages were identified and showed some degree of association with geographical location, anatomical site of infection/disease, and/or gender. We additionally identified several HPV6 lineage- and sublineage-specific SNPs to facilitate the identification of HPV6 variants and determined a representative region within the L2 gene that is suitable for HPV6 whole-genome-based phylogenetic analysis. This study complements and significantly expands the current knowledge of HPV6 genetic diversity and forms a comprehensive basis for future epidemiological, evolutionary, functional, pathogenicity, vaccination, and molecular assay development studies.
Resumo:
BACKGROUND: By analyzing human immunodeficiency virus type 1 (HIV-1) pol sequences from the Swiss HIV Cohort Study (SHCS), we explored whether the prevalence of non-B subtypes reflects domestic transmission or migration patterns. METHODS: Swiss non-B sequences and sequences collected abroad were pooled to construct maximum likelihood trees, which were analyzed for Swiss-specific subepidemics, (subtrees including ≥80% Swiss sequences, bootstrap >70%; macroscale analysis) or evidence for domestic transmission (sequence pairs with genetic distance <1.5%, bootstrap ≥98%; microscale analysis). RESULTS: Of 8287 SHCS participants, 1732 (21%) were infected with non-B subtypes, of which A (n = 328), C (n = 272), CRF01_AE (n = 258), and CRF02_AG (n = 285) were studied further. The macroscale analysis revealed that 21% (A), 16% (C), 24% (CRF01_AE), and 28% (CRF02_AG) belonged to Swiss-specific subepidemics. The microscale analysis identified 26 possible transmission pairs: 3 (12%) including only homosexual Swiss men of white ethnicity; 3 (12%) including homosexual white men from Switzerland and partners from foreign countries; and 10 (38%) involving heterosexual white Swiss men and females of different nationality and predominantly nonwhite ethnicity. CONCLUSIONS: Of all non-B infections diagnosed in Switzerland, <25% could be prevented by domestic interventions. Awareness should be raised among immigrants and Swiss individuals with partners from high prevalence countries to contain the spread of non-B subtypes.
Resumo:
In the ecologically important arbuscular mycorrhizal fungi (AMF), Sod1 encodes a functional polypeptide that confers increased tolerance to oxidative stress and that is upregulated inside the roots during early steps of the symbiosis with host plants. It is still unclear whether its expression is directed at scavenging reactive oxygen species (ROS) produced by the host, if it plays a role in the fungus-host dialogue, or if it is a consequence of oxidative stress from the surrounding environment. All these possibilities are equally likely, and molecular variation at the Sod1 locus can possibly have adaptive implications for one or all of the three mentioned functions. In this paper, we analyzed the diversity of the Sod1 gene in six AMF species, as well as 14 Glomus intraradices isolates from a single natural population. By sequencing this locus, we identified a large amount of nucleotide and amino acid molecular diversity both among AMF species and individuals, suggesting a rapid divergence of its codons. The Sod1 gene was monomorphic within each isolate we analyzed, and quantitative PCR strongly suggest this locus is present as a single copy in G. intraradices. Maximum-likelihood analyses performed using a variety of models for codon evolution indicated that a number of amino acid sites most likely evolved under the regime of positive selection among AMF species. In addition, we found that some isolates of G. intraradices from a natural population harbor very divergent orthologous Sod1 sequences, and our analysis suggested that diversifying selection, rather than recombination, was responsible for the persistence of this molecular diversity within the AMF population.
Resumo:
The development and tests of an iterative reconstruction algorithm for emission tomography based on Bayesian statistical concepts are described. The algorithm uses the entropy of the generated image as a prior distribution, can be accelerated by the choice of an exponent, and converges uniformly to feasible images by the choice of one adjustable parameter. A feasible image has been defined as one that is consistent with the initial data (i.e. it is an image that, if truly a source of radiation in a patient, could have generated the initial data by the Poisson process that governs radioactive disintegration). The fundamental ideas of Bayesian reconstruction are discussed, along with the use of an entropy prior with an adjustable contrast parameter, the use of likelihood with data increment parameters as conditional probability, and the development of the new fast maximum a posteriori with entropy (FMAPE) Algorithm by the successive substitution method. It is shown that in the maximum likelihood estimator (MLE) and FMAPE algorithms, the only correct choice of initial image for the iterative procedure in the absence of a priori knowledge about the image configuration is a uniform field.
Resumo:
A new statistical parallax method using the Maximum Likelihood principle is presented, allowing the simultaneous determination of a luminosity calibration, kinematic characteristics and spatial distribution of a given sample. This method has been developed for the exploitation of the Hipparcos data and presents several improvements with respect to the previous ones: the effects of the selection of the sample, the observational errors, the galactic rotation and the interstellar absorption are taken into account as an intrinsic part of the formulation (as opposed to external corrections). Furthermore, the method is able to identify and characterize physically distinct groups in inhomogeneous samples, thus avoiding biases due to unidentified components. Moreover, the implementation used by the authors is based on the extensive use of numerical methods, so avoiding the need for simplification of the equations and thus the bias they could introduce. Several examples of application using simulated samples are presented, to be followed by applications to real samples in forthcoming articles.
Resumo:
The absolute K magnitudes and kinematic parameters of about 350 oxygen-rich Long-Period Variable stars are calibrated, by means of an up-to-date maximum-likelihood method, using HIPPARCOS parallaxes and proper motions together with radial velocities and, as additional data, periods and V-K colour indices. Four groups, differing by their kinematics and mean magnitudes, are found. For each of them, we also obtain the distributions of magnitude, period and de-reddened colour of the base population, as well as de-biased period-luminosity-colour relations and their two-dimensional projections. The SRa semiregulars do not seem to constitute a separate class of LPVs. The SRb appear to belong to two populations of different ages. In a PL diagram, they constitute two evolutionary sequences towards the Mira stage. The Miras of the disk appear to pulsate on a lower-order mode. The slopes of their de-biased PL and PC relations are found to be very different from the ones of the Oxygen Miras of the LMC. This suggests that a significant number of so-called Miras of the LMC are misclassified. This also suggests that the Miras of the LMC do not constitute a homogeneous group, but include a significant proportion of metal-deficient stars, suggesting a relatively smooth star formation history. As a consequence, one may not trivially transpose the LMC period-luminosity relation from one galaxy to the other.
Resumo:
In this paper we present a Bayesian image reconstruction algorithm with entropy prior (FMAPE) that uses a space-variant hyperparameter. The spatial variation of the hyperparameter allows different degrees of resolution in areas of different statistical characteristics, thus avoiding the large residuals resulting from algorithms that use a constant hyperparameter. In the first implementation of the algorithm, we begin by segmenting a Maximum Likelihood Estimator (MLE) reconstruction. The segmentation method is based on using a wavelet decomposition and a self-organizing neural network. The result is a predetermined number of extended regions plus a small region for each star or bright object. To assign a different value of the hyperparameter to each extended region and star, we use either feasibility tests or cross-validation methods. Once the set of hyperparameters is obtained, we carried out the final Bayesian reconstruction, leading to a reconstruction with decreased bias and excellent visual characteristics. The method has been applied to data from the non-refurbished Hubble Space Telescope. The method can be also applied to ground-based images.
Resumo:
The localization of Last Glacial Maximum (LGM) refugia is crucial information to understand a species' history and predict its reaction to future climate changes. However, many phylogeographical studies often lack sampling designs intensive enough to precisely localize these refugia. The hairy land snail Trochulus villosus has a small range centred on Switzerland, which could be intensively covered by sampling 455 individuals from 52 populations. Based on mitochondrial DNA sequences (COI and 16S), we identified two divergent lineages with distinct geographical distributions. Bayesian skyline plots suggested that both lineages expanded at the end of the LGM. To find where the origin populations were located, we applied the principles of ancestral character reconstruction and identified a candidate refugium for each mtDNA lineage: the French Jura and Central Switzerland, both ice-free during the LGM. Additional refugia, however, could not be excluded, as suggested by the microsatellite analysis of a population subset. Modelling the LGM niche of T. villosus, we showed that suitable climatic conditions were expected in the inferred refugia, but potentially also in the nunataks of the alpine ice shield. In a model selection approach, we compared several alternative recolonization scenarios by estimating the Akaike information criterion for their respective maximum-likelihood migration rates. The 'two refugia' scenario received by far the best support given the distribution of genetic diversity in T. villosus populations. Provided that fine-scale sampling designs and various analytical approaches are combined, it is possible to refine our necessary understanding of species responses to environmental changes.
Resumo:
OBJECTIVES: To monitor HIV-1 transmitted drug resistance (TDR) in a well defined urban area with large access to antiretroviral therapy and to assess the potential source of infection of newly diagnosed HIV individuals. METHODS: All individuals resident in Geneva, Switzerland, with a newly diagnosed HIV infection between 2000 and 2008 were screened for HIV resistance. An infection was considered as recent when the positive test followed a negative screening test within less than 1 year. Phylogenetic analyses were performed by using the maximum likelihood method on pol sequences including 1058 individuals with chronic infection living in Geneva. RESULTS: Of 637 individuals with newly diagnosed HIV infection, 20% had a recent infection. Mutations associated with resistance to at least one drug class were detected in 8.5% [nucleoside reverse transcriptase inhibitors (NRTIs), 6.3%; non-nucleoside reverse transcriptase inhibitors (NNRTIs), 3.5%; protease inhibitors, 1.9%]. TDR (P-trend = 0.015) and, in particular, NNRTI resistance (P = 0.002) increased from 2000 to 2008. Phylogenetic analyses revealed that 34.9% of newly diagnosed individuals, and 52.7% of those with recent infection were linked to transmission clusters. Clusters were more frequent in individuals with TDR than in those with sensitive strains (59.3 vs. 32.6%, respectively; P < 0.0001). Moreover, 84% of newly diagnosed individuals with TDR were part of clusters composed of only newly diagnosed individuals. CONCLUSION: Reconstruction of the HIV transmission networks using phylogenetic analysis shows that newly diagnosed HIV infections are a significant source of onward transmission, particularly of resistant strains, thus suggesting an important self-fueling mechanism for TDR.
Resumo:
The current availability of five complete genomes of different primate species allows the analysis of genetic divergence over the last 40 million years of evolution. We hypothesized that the interspecies differences observed in susceptibility to HIV-1 would be influenced by the long-range selective pressures on host genes associated with HIV-1 pathogenesis. We established a list of human genes (n = 140) proposed to be involved in HIV-1 biology and pathogenesis and a control set of 100 random genes. We retrieved the orthologous genes from the genome of humans and of four nonhuman primates (Pan troglodytes, Pongo pygmaeus abeli, Macaca mulatta, and Callithrix jacchus) and analyzed the nucleotide substitution patterns of this data set using codon-based maximum likelihood procedures. In addition, we evaluated whether the candidate genes have been targets of recent positive selection in humans by analyzing HapMap Phase 2 single-nucleotide polymorphisms genotyped in a region centered on each candidate gene. A total of 1,064 sequences were used for the analyses. Similar median K(A)/K(S) values were estimated for the set of genes involved in HIV-1 pathogenesis and for control genes, 0.19 and 0.15, respectively. However, genes of the innate immunity had median values of 0.37 (P value = 0.0001, compared with control genes), and genes of intrinsic cellular defense had K(A)/K(S) values around or greater than 1.0 (P value = 0.0002). Detailed assessment allowed the identification of residues under positive selection in 13 proteins: AKT1, APOBEC3G, APOBEC3H, CD4, DEFB1, GML, IL4, IL8RA, L-SIGN/CLEC4M, PTPRC/CD45, Tetherin/BST2, TLR7, and TRIM5alpha. A number of those residues are relevant for HIV-1 biology. The set of 140 genes involved in HIV-1 pathogenesis did not show a significant enrichment in signals of recent positive selection in humans (intraspecies selection). However, we identified within or near these genes 24 polymorphisms showing strong signatures of recent positive selection. Interestingly, the DEFB1 gene presented signatures of both interspecies positive selection in primates and intraspecies recent positive selection in humans. The systematic assessment of long-acting selective pressures on primate genomes is a useful tool to extend our understanding of genetic variation influencing contemporary susceptibility to HIV-1.
Resumo:
The structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to small perturbations in these data. For this purpose, studies with simulated and experimental data were conducted. Results with simulated data showed that the diagnostic techniques were efficient to identify the perturbation in data. The results with real data indicated that atypical values among the sampled data may have a strong influence on thematic maps, thus changing the spatial dependence structure. The application of diagnostic techniques should be part of any geostatistical analysis, to ensure a better quality of the information from thematic maps.
Resumo:
BACKGROUND: The majority of Haemosporida species infect birds or reptiles, but many important genera, including Plasmodium, infect mammals. Dipteran vectors shared by avian, reptilian and mammalian Haemosporida, suggest multiple invasions of Mammalia during haemosporidian evolution; yet, phylogenetic analyses have detected only a single invasion event. Until now, several important mammal-infecting genera have been absent in these analyses. This study focuses on the evolutionary origin of Polychromophilus, a unique malaria genus that only infects bats (Microchiroptera) and is transmitted by bat flies (Nycteribiidae). METHODS: Two species of Polychromophilus were obtained from wild bats caught in Switzerland. These were molecularly characterized using four genes (asl, clpc, coI, cytb) from the three different genomes (nucleus, apicoplast, mitochondrion). These data were then combined with data of 60 taxa of Haemosporida available in GenBank. Bayesian inference, maximum likelihood and a range of rooting methods were used to test specific hypotheses concerning the phylogenetic relationships between Polychromophilus and the other haemosporidian genera. RESULTS: The Polychromophilus melanipherus and Polychromophilus murinus samples show genetically distinct patterns and group according to species. The Bayesian tree topology suggests that the monophyletic clade of Polychromophilus falls within the avian/saurian clade of Plasmodium and directed hypothesis testing confirms the Plasmodium origin. CONCLUSION: Polychromophilus' ancestor was most likely a bird- or reptile-infecting Plasmodium before it switched to bats. The invasion of mammals as hosts has, therefore, not been a unique event in the evolutionary history of Haemosporida, despite the suspected costs of adapting to a new host. This was, moreover, accompanied by a switch in dipteran host.
Resumo:
Abstract Traditionally, the common reserving methods used by the non-life actuaries are based on the assumption that future claims are going to behave in the same way as they did in the past. There are two main sources of variability in the processus of development of the claims: the variability of the speed with which the claims are settled and the variability between the severity of the claims from different accident years. High changes in these processes will generate distortions in the estimation of the claims reserves. The main objective of this thesis is to provide an indicator which firstly identifies and quantifies these two influences and secondly to determine which model is adequate for a specific situation. Two stochastic models were analysed and the predictive distributions of the future claims were obtained. The main advantage of the stochastic models is that they provide measures of variability of the reserves estimates. The first model (PDM) combines one conjugate family Dirichlet - Multinomial with the Poisson distribution. The second model (NBDM) improves the first one by combining two conjugate families Poisson -Gamma (for distribution of the ultimate amounts) and Dirichlet Multinomial (for distribution of the incremental claims payments). It was found that the second model allows to find the speed variability in the reporting process and development of the claims severity as function of two above mentioned distributions' parameters. These are the shape parameter of the Gamma distribution and the Dirichlet parameter. Depending on the relation between them we can decide on the adequacy of the claims reserve estimation method. The parameters have been estimated by the Methods of Moments and Maximum Likelihood. The results were tested using chosen simulation data and then using real data originating from the three lines of business: Property/Casualty, General Liability, and Accident Insurance. These data include different developments and specificities. The outcome of the thesis shows that when the Dirichlet parameter is greater than the shape parameter of the Gamma, resulting in a model with positive correlation between the past and future claims payments, suggests the Chain-Ladder method as appropriate for the claims reserve estimation. In terms of claims reserves, if the cumulated payments are high the positive correlation will imply high expectations for the future payments resulting in high claims reserves estimates. The negative correlation appears when the Dirichlet parameter is lower than the shape parameter of the Gamma, meaning low expected future payments for the same high observed cumulated payments. This corresponds to the situation when claims are reported rapidly and fewer claims remain expected subsequently. The extreme case appears in the situation when all claims are reported at the same time leading to expectations for the future payments of zero or equal to the aggregated amount of the ultimate paid claims. For this latter case, the Chain-Ladder is not recommended.
Resumo:
Background: The RPS4 gene codifies for ribosomal protein S4, a very well-conserved protein present in all kingdoms. In primates, RPS4 is codified by two functional genes located on both sex chromosomes: the RPS4X and RPS4Y genes. In humans, RPS4Y is duplicated and the Y chromosome therefore carries a third functional paralog: RPS4Y2, which presents a testis-specific expression pattern. Results: DNA sequence analysis of the intronic and cDNA regions of RPS4Y genes from species covering the entire primate phylogeny showed that the duplication event leading to the second Y-linked copy occurred after the divergence of New World monkeys, about 35 million years ago. Maximum likelihood analyses of the synonymous and non-synonymous substitutions revealed that positive selection was acting on RPS4Y2 gene in the human lineage, which represents the first evidence of positive selection on a ribosomal protein gene. Putative positive amino acid replacements affected the three domains of the protein: one of these changes is located in the KOW protein domain and affects the unique invariable position of this motif, and might thus have a dramatic effect on the protein function.Conclusion: Here, we shed new light on the evolutionary history of RPS4Y gene family, especially on that of RPS4Y2. The results point that the RPS4Y1 gene might be maintained to compensate gene dosage between sexes, while RPS4Y2 might have acquired a new function, at least in the lineage leading to humans.
Resumo:
ABSTRACT Trichoderma species are non-pathogenic microorganisms that protect against fungal diseases and contribute to increased crop yields. However, not all Trichoderma species have the same effects on crop or a pathogen, whereby the characterization and identification of strains at the species level is the first step in the use of a microorganism. The aim of this study was the identification – at species level – of five strains of Trichoderma isolated from soil samples obtained from garlic and onion fields located in Costa Rica, through the analysis of the ITS1, 5.8S, and ITS2 ribosomal RNA regions; as well as the determination of their individual antagonistic ability over S. cepivorum Berkeley. In order to distinguish the strains, the amplified products were analyzed using MEGA v6.0 software, calculating the genetic distances through the Tamura-Nei model and building the phylogenetic tree using the Maximum Likelihood method. We established that the evaluated strains belonged to the species T. harzianum and T. asperellum; however it was not possible to identify one of the analyzed strains based on the species criterion. To evaluate their antagonistic ability, the dual culture technique, Bell’s scale, and the percentage inhibition of radial growth (PIRG) were used, evidencing that one of the T. asperellum isolates presented the best yields under standard, solid fermentation conditions.