999 resultados para Magnetic quadrupole trap
Resumo:
Magnetic susceptibility measurements were performed on freshly fallen Almahata Sitta meteorites. Most recovered samples are polymict ureilites. Those found in the first four months since impact, before the meteorites were exposed to rain, have a magnetic susceptibility in the narrow range of 4.92 ± 0.08 log 10-9 Am2/kg close to the range of other ureilite falls 4.95 ± 0.14 log 10-9 Am2/kg reported by Rochette et al. (2009). The Almahata Sitta samples collected one year after the fall have similar values (4.90 ± 0.06 log 10-9 Am2/kg), revealing that the effect of one-year of terrestrial weathering was not severe yet. However, our reported values are higher than derived from polymict (brecciated) ureilites 4.38 ± 0.47 log 10-9 Am2/kg (Rochette et al. 2009) containing both falls and finds confirming that these are significantly weathered. Additionally other fresh-looking meteorites of non-ureilitic compositions were collected in the Almahata Sitta strewn field. Magnetic susceptibility measurements proved to be a convenient non-destructive method for identifying non-ureilitic meteorites among those collected in the Almahata Sitta strewn field, even among fully crusted. Three such meteorites, no. 16, 25, and 41, were analyzed and their composition determined as EH6, H5 and EL6 respectively (Zolensky et al., 2010). A high scatter of magnetic susceptibility values among small (< 5 g) samples revealed high inhomogeneity within the 2008 TC3 material at scales below 1-2 cm.
Resumo:
The plasma is taken to be composed of singly ionized molecules, free electrons and neutral molecules, each of the component being described by the hydromagnetic equations, modified to take into account the displacement current, existence of free charge in the medium, and the modified current equation without involving the scalar conductivity. The basic equations are linearized and only small amplitude waves are considered. In the absence of any external magnetic field, the transverse and longitudinal modes of oscillation separate out. In the transverse part a coupled plasma oscillation occurs which could be propagated only above a certain critical frequency and in the longitudinal part one extraordinary mode of propagation occurs having a forbidden range of frequencies. When there is an external applied magnetic field, ordinary and extraordinary waves are propagated along the direction of the magnetic field, whereas only ordinary waves are propagated transverse to the magnetic field. The critical frequencies above which these waves are propagated are evaluated and, the possible explanation of this medium like behaviour could be the implicit assumption of conductivity being not a scalar.
Resumo:
In this paper, the steady laminar viscous hypersonic flow of an electrically conducting fluid in the region of the stagnation point of an insulating blunt body in the presence of a radial magnetic field is studied by similarity solution approach, taking into account the variation of the product of density and viscosity across the boundary layer. The two coupled non-linear ordinary differential equations are solved simultaneously using Runge-Kutta-Gill method. It has been found that the effect of the variation of the product of density and viscosity on skin friction coefficient and Nusselt number is appreciable. The skin friction coefficient increases but Nusselt number decreases as the magnetic field or the total enthalpy at the wall increases
Resumo:
From symmetry considerations and using generalized Onsager relations, it is shown that 66 of the 90 magnetic classes, consisting of 29 single colour and 37 double colour ones, can exhibit what may be called the strain gyrotropic rotation. Similarly, 69 of the 90 magnetic classes, consisting of 21 single colour and 48 double colour ones, can exhibit what may be called the strain gyrotropic birefringence. A crystal in the class m3 or m3 m is interesting as it can exhibit strain gyrotropic rotation despite its being cubic and incapable of exhibiting gyrotropic rotation in the unstressed state. Similarly, a crystal in the class m3 m, is interesting as it can exhibit strain gyrotropic birefringence despite its being cubic and incapable of exhibiting gyrotropic birefringence in the unstressed state.
Resumo:
The nuclear magnetic resonance spectra of longifolene, zerumbone, humulene, and their hydroderivatives have been studied in order to gauge the potentialities of this new tool in the field of sesquiterpenes. On the basis of present study, it has been possible to unequivocally fix the positions of the ethylene linkages in humulene and thus provide a straightforward solution of this hitherto unsolved problem.
Resumo:
The magnetic susceptibilities of certain vanadium pentoxide systems supported by kieselgur have been determined in the temperature interval 30° to 400° C. The plot of reciprocal susceptibility against temperature for all the systems studied indicates sudden deflections at temperatures which are about 150° lower than those of optimum catalytic activity. It has been suggested that these points may mark the temperatures of commencement of structural changes which may be responsible for the activity of these catalysts.
Resumo:
We present a comprehensive study of the thickness dependent structural, magnetic and magnetotransport properties of oriented La0.5Sr0.5CoO3 thin films grown on LaAlO3 by Pulsed Laser Deposition. We observe that these films undergo a reduction in Curie temperature (T-c) with a decrease in film thickness, and it is found to be primarily caused by the finite size effect since the finite scaling law [T-c(infinity) T-c(t)/T-c(infinity) = (c/t)lambda holds good over the studied thickness range. We rule out the contribution from the strain induced suppression of Curie temperature with decreasing film thickness since all the films exhibit a constant out of plane tensile strain (0.5%) irrespective of their varying thickness. However, we observe that the coercivity of the films is an order of magnitude higher than that of the bulk due to the tensile strain. In addition, we also observe an increase in the magneto resistance peak and a decrease in coercivity and electrical resistivity with an increase in film thickness. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The pressure dependence of the chlorine NQR frequency in NaClo3 has been investigated up to 20 k bar hydrostatic pressure. A distinct break in slope in the pressure dependence of the resonance frequency is observed near 11 k bar. This is attributed to a phase transition reported earlier by Bridgman in this pressure region.
Resumo:
The laminar boundary layer over a stationary infinite disk induced by a rotating compressible fluid is considered. The free stream velocity has been taken as tangential and varies as a power of radius, i.e. v∞ ˜ r−n. The effect of the axial magnetic field and suction is also included in the analysis. An implicit finite difference scheme is employed to the governing similarity equations for numerical computations. Solutions are studied for various values of disk to fluid temperature ratio and for values of n between 1 and −1. In the absence of the magnetic field and suction, velocity profiles exhibit oscillations. It has been observed that for a hot disk in the presence of a magnetic field the boundary layer solutions decay algebraically instead of decaying exponentially. In the absence of the magnetic field and suction, the solution of the similarity equations exists only for a certain range of n.