986 resultados para MUTATION-RATE
Resumo:
Background: Germline mutations in the CDKN2A gene, which encodes two proteins (p16INK4A and p14ARF), are the most common cause of inherited susceptibility to melanoma. We examined the penetrance of such mutations using data from eight groups from Europe, Australia and the United States that are part of The Melanoma Genetics Consortium Methods: We analyzed 80 families with documented CDKN2A mutations and multiple cases of cutaneous melanoma. We modeled penetrance for melanoma using a logistic regression model incorporating survival analysis. Hypothesis testing was based on likelihood ratio tests. Covariates included gender, alterations in p14APF protein, and population melanoma incidence rates. All statistical tests were two-sided. Results: The 80 analyzed families contained 402 melanoma patients, 320 of whom were tested for mutations and 291 were mutation carriers. We also tested 713 unaffected family members for mutations and 194 were carriers. Overall, CDKN2A mutation penetrance was estimated to be 0.30 (95% confidence interval (CI) = 0.12 to 0.62) by age 50 years and 0.67 (95% CI = 0.31 to 0.96) by age 80 years. Penetrance was not statistically significantly modified by gender or by whether the CDKN2A mutation altered p14ARF protein. However, there was a statistically significant effect of residing in a location with a high population incidence rate of melanoma (P = .003). By age 50 years CDKN2A mutation penetrance reached 0.13 in Europe, 0.50 in the United States, and 0.32 in Australia; by age 80 years it was 0.58 in Europe, 0.76 in the United States, and 0.91 in Australia. Conclusions: This study, which gives the most informed estimates of CDKN2A mutation penetrance available, indicates that the penetrance varies with melanoma population incidence rates. Thus, the same factors that affect population incidence of melanoma may also mediate CDKN2A penetrance.
Resumo:
Direct comparisons between photosynthetic O-2 evolution rate and electron transport rate (ETR) were made in situ over 24 h using the benthic macroalga Ulva lactuca (Chlorophyta), growing and measured at a depth of 1.8 m, where the midday irradiance rose to 400-600 mumol photons m(-2) s(-1). O-2 exchange was measured with a 5-chamber data-logging apparatus and ETR with a submersible pulse amplitude modulated (PAM) fluorometer (Diving-PAM). Steady-state quantum yield ((Fm'-Ft)/Fm') decreased from 0.7 during the morning to 0.45 at midday, followed by some recovery in the late afternoon. At low to medium irradiances (0-300 mumol photons m(-2) s(-1)), there was a significant correlation between O-2 evolution and ETR, but at higher irradiances, ETR continued to increase steadily, while O-2 evolution tended towards an asymptote. However at high irradiance levels (600-1200 mumol photons m-(2) s(-1)) ETR was significantly lowered. Two methods of measuring ETR, based on either diel ambient light levels and fluorescence yields or rapid light curves, gave similar results at low to moderate irradiance levels. Nutrient enrichment (increases in [NO3-], [NH4+] and [HPO42-] of 5- to 15-fold over ambient concentrations) resulted in an increase, within hours, in photosynthetic rates measured by both ETR and O-2 evolution techniques. At low irradiances, approximately 6.5 to 8.2 electrons passed through PS II during the evolution of one molecule of O-2, i.e., up to twice the theoretical minimum number of four. However, in nutrient-enriched treatments this ratio dropped to 5.1. The results indicate that PAM fluorescence can be used as a good indication of the photosynthetic rate only at low to medium irradiances.
Resumo:
Theory predicts that in small isolated populations random genetic drift can lead to phenotypic divergence; however this prediction has rarely been tested quantitatively in natural populations. Here we utilize natural repeated island colonization events by members of the avian species complex, Zosterops lateralis, to assess whether or not genetic drift alone is an adequate explanation for the observed patterns of microevolutionary divergence in morphology. Morphological and molecular genetic characteristics of island and mainland populations are compared to test three predictions of drift theory: (1) that the pattern of morphological change is idiosyncratic to each island; (2) that there is concordance between morphological and neutral genetic shifts across island populations; and (3) for populations whose time of colonization is known, that the rate of morphological change is sufficiently slow to be accounted for solely by genetic drift. Our results are not consistent with these predictions. First, the direction of size shifts was consistently towards larger size, suggesting the action of a nonrandom process. Second, patterns of morphological divergence among recently colonized populations showed little concordance with divergence in neutral genetic characters. Third, rate tests of morphological change showed that effective population sizes were not small enough for random processes alone to account for the magnitude of microevolutionary change. Altogether, these three lines of evidence suggest that drift alone is not an adequate explanation of morphological differentiation in recently colonized island Zosterops and therefore we suggest that the observed microevolutionary changes are largely a result of directional natural selection.
Resumo:
This study tested the hypotheses that skeletal muscle mitochondrial ATP production rate (MAPR) is impaired in patients with peripheral arterial disease (PAD) and that it relates positively to their walking performances. Seven untrained patients, eight exercise-trained patients and 11 healthy controls completed a maximal walking test and had muscle sampled from the gastrocnemius medialis muscle. Muscle was analysed for its MAPR in the presence of pyruvate, palmitoyl-L-carnitine or both, as well as citrate synthase (CS) activity. MAPRs were not different between untrained PAD and controls. In contrast, MAPRs (pyruvate) were significantly higher in trained PAD vs. controls. MAPR (pyruvate combinations) was also significantly higher in trained than untrained PAD muscle. MAPR and CS activity were highly correlated with walking performance in patients, but not in controls. These data do not support the hypothesis that isolated mitochondria are functionally impaired in PAD and demonstrate that the muscle mitochondrial capacity to oxidize carbohydrate is positively related to walking performance in these patients.
Resumo:
This study reexamined the association between speech rate and memory span in children from kindergarten to sixth grade (N = 152) in order to potentially account for the inconsistencies within the published literature on this topic. Some of the inconsistencies in past research may reflect the different methods adopted in assessing speech rate. In particular, repeating word triples may itself involve memory demands, contaminating the correlation between speech rate and memory span in younger children. Analyses using composite speech rate and memory span measures showed that speech rate for word triples shared variance with memory span that was independent of speech rate for single words. Moreover, speech rate for word triples was largely redundant with age in explaining additional variation in memory span once the effects of speech rate for single words were controlled. (C) 2002 Elsevier Science.
Resumo:
Complex chemical reactions in the gas phase can be decomposed into a network of elementary (e.g., unimolecular and bimolecular) steps which may involve multiple reactant channels, multiple intermediates, and multiple products. The modeling of such reactions involves describing the molecular species and their transformation by reaction at a detailed level. Here we focus on a detailed modeling of the C(P-3)+allene (C3H4) reaction, for which molecular beam experiments and theoretical calculations have previously been performed. In our previous calculations, product branching ratios for a nonrotating isomerizing unimolecular system were predicted. We extend the previous calculations to predict absolute unimolecular rate coefficients and branching ratios using microcanonical variational transition state theory (mu-VTST) with full energy and angular momentum resolution. Our calculation of the initial capture rate is facilitated by systematic ab initio potential energy surface calculations that describe the interaction potential between carbon and allene as a function of the angle of attack. Furthermore, the chemical kinetic scheme is enhanced to explicitly treat the entrance channels in terms of a predicted overall input flux and also to allow for the possibility of redissociation via the entrance channels. Thus, the computation of total bimolecular reaction rates and partial capture rates is now possible. (C) 2002 American Institute of Physics.
Resumo:
Within the skeletal muscle cell at the onset of muscular contraction, phosphocreatine (PCr) represents the most immediate reserve for the rephosphorylation of adenosine triphosphate (ATP). As a result, its concentration can be reduced to less than 30% of resting levels during intense exercise. As a fall in the level of PCr appears to adversely affect muscle contraction, and therefore power output in a subsequent bout, maximising the rate of PCr resynthesis during a brief recovery period will be of benefit to an athlete involved in activities which demand intermittent exercise. Although this resynthesis process simply involves the rephosphorylation of creatine by aerobically produced ATP (with the release of protons), it has both a fast and slow component, each proceeding at a rate that is controlled by different components of the creatine kinase equilibrium. The initial fast phase appears to proceed at a rate independent of muscle pH. Instead, its rate appears to be controlled by adenosine diphosphate (ADP) levels; either directly through its free cytosolic concentration, or indirectly, through its effect on the free energy of ATP hydrolysis. Once this fast phase of recovery is complete, there is a secondary slower phase that appears almost certainly rate-dependant on the return of the muscle cell to homeostatic intracellular pH. Given the importance of oxidative phosphorylation in this resynthesis process, those individuals with an elevated aerobic power should be able to resynthesise PCr at a more rapid rate than their sedentary counterparts. However, results from studies that have used phosphorus nuclear magnetic resonance (P-31-NMR) spectroscopy, have been somewhat inconsistent with respect to the relationship between aerobic power and PCr recovery following intense exercise. Because of the methodological constraints that appear to have limited a number of these studies, further research in this area is warranted.
Resumo:
Background & Aims: Two major mutations are defined within the hemochromatosis gene, HFE. Although the effects of the C282Y mutation have been well characterized, the effects of the H63D mutation remain unclear. We accessed a well-defined population in Busselton, Australia, and determined the frequency of the H63D mutation and its influence on total body iron stores. Methods: Serum transferrin saturation and ferritin levels were correlated with the H63D mutation in 2531 unrelated white subjects who did not possess the C282Y mutation. Results: Sixty-two subjects (2.1%) were homozygous for the H63D mutation, 711 (23.6%) were heterozygous, and 1758 (58.4%) were wild-type for the H63D mutation. Serum transferrin saturation was significantly increased in male and female H63D homozygotes and heterozygotes compared with wild-types. Serum ferritin levels within each gender were not influenced by H63D genotypes. Elevated transferrin saturation greater than or equal to45% was observed in a greater proportion of male H63D carriers than male wild-types. Male H63D homozygotes (9%) and heterozygotes (3%) were more likely to have both elevated transferrin saturation and elevated ferritin greater than or equal to300 ng/mL than male wild-types (0.7%). Homozygosity for H63D was not associated with the development of clinically significant iron overload. Conclusions: Presence of the H63D mutation results in a significant increase in serum transferrin saturation but does hot result in significant iron overload. In the absence of the C282Y mutation, the H63D mutation is not clinically significant.
Resumo:
In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by DIETERICH and KILGORE (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance D-c on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.
Resumo:
Human R183H-GH causes autosomal dominant GH deficiency type II. Because we show here that the mutant hormone is fully bioactive, we have sought to locate an impairment in its progress through the secretory pathway as assessed by pulse chase experiments. Newly synthesized wild-type and R183H-GH were stable when expressed transiently in AtT20 cells, and both formed equivalent amounts of Lubrol-insoluble aggregates within 40 min after synthesis. There was no evidence for intermolecular disulfide bond formation in aggregates of wild-type hormone or the R183H mutant. Both wildtype and R183H-GH were packaged into secretory granules, assessed by the ability of 1 mm BaCl2 to stimulate release and by immunocytochemistry. The mutant differed from wildtype hormone in its retention in the cells after packaging into secretory granules; 50% more R183H-GH than wild-type aggregates were retained in AtT20 cells 120 min after synthesis, and stimulated release of R183H-GH or a mixture of R183H-GH and wild-type that had been retained in the cell was reduced. The longer retention of R183H-GH aggregates indicates that a single point mutation in a protein contained in secretory granules affects the rate of secretory granule release.
Resumo:
The amelogenesis imperfectas (Al) area geneticatly heterogeneous group of diseases that result in defective development of tooth enamel. Although X-linked, autosomal. dominant and autosomal. recessive forms of Al have been clinically characterized, only two genes (AMELX and ENAM) have been associated with Al. To date, three enamelin (ENAM) mutations have been identified. These mutations cause phenotypically diverse forms of autosomal. dominant Al. Detailed phenotype-genotype correlations have not been performed for autosomal. dominant Al due to ENAM mutations. We identified a previously unreported kindred segregating for the ENAM mutation, g.8344delG. Light and electron microscopy analyses of unerupted permanent teeth show the enamel is markedly reduced in thickness, Lacks a prismatic structure and has a laminated appearance. Taken together these histological features support the enamelin protein as being critical for the development of a normal. enamel. thickness and that it Likely has a role in regulating c-axis crystallite growth. Because there is growing molecular and phenotypic diversity in the enamelin defects, it is critical to have a nomenclature and numbering system for characterizing these conditions. We present a standardized nomenclature for ENAM mutations that will allow consistent reporting and communication. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper analyses the exchange rate exposure displayed by a sample of Australian international equity trusts (IET). Exchange rate exposure is also examined in the context of differing economic climates with particular emphasis on the Asian crisis in mid-1997. It is found that there is evidence of exchange rate exposure particularly in the context of a multiple exchange rate model. Exposure varies substantially between three alternative time periods with different exposure apparent subsequent to the Asian crisis than prior to this event.