992 resultados para MOLECULAR HOSTS
Resumo:
Molecular dynamics (MD) simulations are reported for an anchored bilayer formed by the intercalation of cetyl trimethyl ammonium (CTA) and CH3(CH2)15N+(CH3) ions in a layered solid, CdPS3. The intercalated CTA ions are organized with the cationic headgroups tethered to the inorganic sheet and the hydrocarbon tails arranged as bilayers. Simulations were performed at three temperatures, 65, 180, and 298 K, using an isothermal−isobaric ensemble that was subsequently switched once macroscopic parameters had converged to a canonical isothermal−isochoric ensemble. The simulations are able to reproduce the experimental features of this system, including the formation of the bilayer and layer-to-layer separation distance. An analysis of the conformation of the chains showed that at all three temperatures a fraction of the alkyl chains retained a planar all-trans conformation, and that gauche bonds occurred as part of a “kink” (gauche+−trans−gauche−) sequence and not as isolated gauche bonds. Trans−gauche isomerization rates for the alkyl chains in the anchored bilayer are slower than those in lipid bilayers at the same temperature and show a progressive increase as the torsion numbers approach the tail. A two-dimensional periodic Voronoi tessellation analysis was performed to obtain the single-molecular area of an alkyl chain in the bilayer. The single-molecular area relaxation times are an order of magnitude longer than the trans−gauche isomerization times. The results indicate that the trans−gauche isomerization is associated with the creation and annihilation of a kink defect sequence. The results of the present MD simulation explain the apparent conflicting estimates of the gauche disorder in this system as obtained from infrared and 13C nuclear magnetic resonance measurements.
Resumo:
The cDNAs coding for the brain GnRHs (AY373449-51), pituitary GH, SL and PRL, and liver IGFs (AY427954-5) were isolated. Partial cDNA sequences of the brain (Cyp19b) and gonadal (Cyp19a) aromatases have also been obtained. These tools would be utilized to study the endocrine regulation of puberty in the grey mullet.
Resumo:
A molecular marker-based map of perennial ryegrass (Lolium perenne L.) has been constructed through the use of polymorphisms associated with expressed sequence tags (ESTs). A pair-cross between genotypes from a North African ecotype and the cultivar Aurora was used to generate a two-way pseudo-testcross population. A selection of 157 cDNAs assigned to eight different functional categories associated with agronomically important biological processes was used to detect polymorphic EST–RFLP loci in the F1(NA6 × AU6) population. A comprehensive set of EST–SSR markers was developed from the analysis of 14,767 unigenes, with 310 primer pairs showing efficient amplification and detecting 113 polymorphic loci. Two parental genetic maps were produced: the NA6 genetic map contains 88 EST–RFLP and 71 EST–SSR loci with a total map length of 963 cM, while the AU6 genetic map contains 67 EST–RFLP and 58 EST–SSR loci with a total map length of 757 cM. Bridging loci permitted the alignment of homologous chromosomes between the parental maps, and a sub-set of genomic DNA-derived SSRs was used to relate linkage groups to the perennial ryegrass reference map. Regions of segregation distortion were identified, in some instances in common with other perennial ryegrass maps. The EST-derived marker-based map provides the basis for in silico comparative genetic mapping, as well as the evaluation of co-location between QTLs and functionally associated genetic loci.
Resumo:
The crystal structures of (1) L-arginine D-asparate, C6HIsN40~.C4H6NO4 [triclinic, P1, a=5.239(1), b=9.544(1), c=14.064(2)A, a=85"58(1), /3=88.73 (1), ~/=84.35 (1) °, Z=2] and (2) L-arginine D-glutamate trihydrate, C6H15N40~-.CsHsNO4.3H20 [monoclinic, P2~, a=9.968(2), b=4.652(1), c=19.930 (2) A, fl = 101.20 (1) °, Z = 2] have been determined using direct methods. They have been refined to R =0.042 and 0.048 for 2829 and 2035 unique reflections respectively [I>2cr(I)]. The conformations of the two arginine molecules in the aspartate complex are different from those observed so far in the crystal structures of arginine, its salts and complexes. In both complexes, the molecules are organized into double layers stacked along the longest axis. The core of each double layer consists of two parallel sheets made up of main-chain atoms, each involving both types of molecules. The hydrogen bonds within each sheet and those that interconnect the two sheets give rise to EL-, DD- and DE-type head-to-tail sequences. Adjacent double layers in (1) are held together by side-chain-side-chain interactions whereas those in (2) are interconnected through an extensive network of water molecules which interact with sidechain guanidyl and carboxylate groups. The aggregation pattern observed in the two LD complexes is fundamentally different from that found in the corresponding EL complexes.
Resumo:
We report a pH-dependent conformational transition in short, defined homopolymeric deoxyadenosines (dA(15)) from a single helical structure with stacked nucleobases at neutral pH to a double-helical, parallel-stranded duplex held together by AH-HA base pairs at acidic pH. Using native PAGE, 2D NMR, circular dichroism (CD) and fluorescence spectroscopy, we have characterized the two different pH dependent forms of dA(15). The pH-triggered transition between the two defined helical forms of dA(15) is characterized by CD and fluorescence. The kinetics of this conformational switch is found to occur on a millisecond time scale. This robust, highly reversible, pH-induced transition between the two well-defined structured states of dA(15)represents a new molecular building block for the construction of quick-response, pH-switchable architectures in structural DNA nanotechnology.
Resumo:
Seventy three isolates of Pythium aphanidermatum obtained from cucumber from four different regions of Oman and 16 isolates of muskmelon from the Batinah region in Oman were characterized for aggressiveness, sensitivity to metalaxyl and genetic diversity using AFLP fingerprinting. Twenty isolates of P. aphanidermatum from diverse hosts from different countries were also included in the study. Most isolates from Oman were found to be aggressive on cucumber seedlings and all were highly sensitive to metalaxyl (EC50 < 0•80 µg mL−1). Isolates from cucumber and muskmelon were as aggressive as each other on both hosts (P > 0.05), which implies a lack of host specialization in P. aphanidermatum on these two hosts in Oman. AFLP analysis of all isolates using four primer-pair combinations resolved 152 bands, of which 61 (~40%) were polymorphic. Isolates of P. aphanidermatum from Oman and other countries exhibited high genetic similarity (mean = 94.1%) and produced 59 different AFLP profiles. Analysis of molecular variance indicated that most AFLP variation among populations of P. aphanidermatum in Oman was associated with geographical regions (FST = 0.118; P < 0.0001), not hosts (FST = -0.004; P = 0.4323). These data were supported by the high rate of recovery (24%) of identical phenotypes between cucumber and muskmelon fields in the same region as compared to the low recovery (10%) across regions in Oman, which suggests more frequent movement of Pythium inoculum among muskmelon and cucumber fields in the same region compared to movement across geographically separated regions. However, recovering clones among regions and different countries may imply circulation of Pythium inoculum via common sources in Oman and also intercontinental spread of isolates.
Resumo:
A study was undertaken in 2004 and 2005 to characterize pathogens associated with damping-off of greenhouse-grown cucumber seedlings in 13 districts in Oman. Identification of Pythium to the species level was based on sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Of the 98 Pythium isolates collected during the survey, Pythium aphanidermatum, P. spinosum, P. splendens and P. oligandrum accounted for 76%, 22%, 1% and 1%, respectively. Pythium aphanidermatum was isolated from all of the districts, while P. spinosum was isolated from seven districts. Pathogenicity tests showed inter- and intraspecific variation in aggressiveness between Pythium species. Pythium aphanidermatum, P. spinosum and P. splendens were found to be highly aggressive at 25°C. However, the aggressiveness of P. spinosum decreased when the temperature was raised to 30°C, which was found to correspond to the lower frequency of isolation of P. spinosum in the warmer seasons, compared to the cooler time of the year. Pythium aphanidermatum exhibited limited intraspecific variation in the sequences of the ITS region of the rDNA and showed 100% similarity to the corresponding P. aphanidermatum sequences from GenBank. The ITS sequence data, as well as morphological characteristics of P. spinosum isolates, showed a high level of similarity within and between P. spinosum and P. kunmingense, and suggested that the two species were synonymous. This study represents the first report of P. spinosum, P. splendens and P. oligandrum in Oman.
Resumo:
This work was prompted by the need to be able to identify the invasive mussel species, Perna viridis, in tropical Australian seas using techniques that do not rely solely on morphology. DNA-based molecular methods utilizing a polymerase chain reaction (PCR) approach were developed to distinguish unambiguously between the three species in the genus Perna. Target regions were portions of two mitochondrial genes, cox1 and nad4, and the intergenic spacer between these that occurs in at least two Perna species. Based on interspecific sequence comparisons of the nad4 gene, a conserved primer has been designed that can act as a forward primer in PCRs for any Perna species. Four reverse primers have also been designed, based on nad4 and intergenic spacer sequences, which yield species-specific products of different lengths when paired with the conserved forward primer. A further pair of primers has been designed that will amplify part of the cox1 gene of any Perna species, and possibly other molluscs, as a positive control to demonstrate that the PCR is working.
Resumo:
Twelve years ago our understanding of ratoon stunting disease (RSD) was confined almost exclusively to diagnosis of the disease and control via farm hygiene, with little understanding of the biology of the interaction between the causal agent (Leifsonia xyli subsp. xyli) and the host plant sugarcane (Saccharum spp. hybrids). Since then, research has focused on developing the molecular tools to dissect L. xyli subsp. xyli, so that better control strategies can be developed to prevent losses from RSD. Within this review, we give a brief overview of the progression in research on L. xyli subsp. xyli and highlight future challenges. After a brief historical background on RSD, we discuss the development of molecular tools such as transformation and transposon mutagenesis and discuss the apparent lack of genetic diversity within the L. xyli subsp. xyli world population. We go on to discuss the sequencing of the genome of L. xyli subsp. xyli, describe the key findings and suggest some future research based on known deficiencies that will capitalise on this tremendous knowledge base to which we now have access.
Resumo:
Bats (order Chiroptera, suborders Megachiroptera and Microchiroptera) are abundant, diverse, and geographically widespread. These mammals provide us with resources, but their importance is minimized and many of their populations and species are at risk, even threatened or endangered. Some of their characteristics (food choices, colonial or solitary nature, population structure, ability to fly, seasonal migration and daily movement patterns, torpor and hibernation, life span, roosting behaviors, ability to echolocate, virus susceptibility) make them exquisitely suitable hosts of viruses and other disease agents. Bats of certain species are well recognized as being capable of transmitting rabies virus, but recent observations of outbreaks and epidemics of newly recognized human and livestock diseases caused by viruses transmitted by various megachiropteran and microchiropteran bats have drawn attention anew to these remarkable mammals. This paper summarizes information regarding chiropteran characteristics and information regarding 66 viruses that have been isolated from bats. From these summaries, it is clear that we do not know enough about bat biology, that we are doing too little in terms of bat conservation, and that there remain a multitude of questions regarding the role of bats in disease emergence.
Resumo:
An urgent need exists for indicators of soil health and patch functionality in extensive rangelands that can be measured efficiently and at low cost. Soil mites are candidate indicators, but their identification and handling is so specialised and time-consuming that their inclusion in routine monitoring is unlikely. The aim of this study was to measure the relationship between patch type and mite assemblages using a conventional approach. An additional aim was to determine if a molecular approach traditionally used for soil microbes could be adapted for soil mites to overcome some of the bottlenecks associated with soil fauna diversity assessment. Soil mite species abundance and diversity were measured using conventional ecological methods in soil from patches with perennial grass and litter cover (PGL), and compared to soil from bare patches with annual grasses and/or litter cover (BAL). Soil mite assemblages were also assessed using a molecular method called terminal-restriction fragment length polymorphism (T-RFLP) analysis. The conventional data showed a relationship between patch type and mite assemblage. The Prostigmata and Oribatida were well represented in the PGL sites, particularly the Aphelacaridae (Oribatida). For T-RFLP analysis, the mite community was represented by a series of DNA fragment lengths that reflected mite sequence diversity. The T-RFLP data showed a distinct difference in the mite assemblage between the patch types. Where possible, T-RFLP peaks were matched to mite families using a reference 18S rDNA database, and the Aphelacaridae prevalent in the conventional samples at PGL sites were identified, as were prostigmatids and oribatids. We identified limits to the T-RFLP approach and this included an inability to distinguish some species whose DNA sequences were similar. Despite these limitations, the data still showed a clear difference between sites, and the molecular taxonomic inferences also compared well with the conventional ecological data. The results from this study indicated that the T-RFLP approach was effective in measuring mite assemblages in this system. The power of this technique lies in the fact that species diversity and abundance data can be obtained quickly because of the time taken to process hundreds of samples, from soil DNA extraction to data output on the gene analyser, can be as little as 4 days.
Resumo:
Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information-coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools-provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to "bridge the application gap" between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs.
Resumo:
Recent studies have suggested that bats are the natural reservoir of a range of coronaviruses (CoVs), and that rhinolophid bats harbor viruses closely related to the severe acute respiratory syndrome (SARS) CoV, which caused an outbreak of respiratory illness in humans during 2002-2003. We examined the evolutionary relationships between bat CoVs and their hosts by using sequence data of the virus RNA-dependent RNA polymerase gene and the bat cytochrome b gene. Phylogenetic analyses showed multiple incongruent associations between the phylogenies of rhinolophid bats and their CoVs, which suggested that host shifts have occurred in the recent evolutionary history of this group. These shifts may be due to either virus biologic traits or host behavioral traits. This finding has implications for the emergence of SARS and for the potential future emergence of SARS-CoVs or related viruses.
Resumo:
The detection, distribution, molecular and biological properties, vector relations and control of tospoviruses present in Australia, including Tomato spotted wilt virus (TSWV), Capsicum chlorosis virus (CaCV) and Iris yellow spot virus (IYSV), are reviewed. TSWV occurs throughout Australia where it has caused serious sporadic epidemics since it was first described in the 1920s. The frequency and distribution of outbreaks has increased in the 1990s, with the arrival and dispersal of the western flower thrips (Frankliniella occidentalis) being one factor favouring this situation. The crops most frequently and severely affected are capsicum, lettuce, tomato, potato and several species of ornamentals. Minimal differences were found between the nucleocapsid (N) gene amino acid sequences of Australian isolates and these were most closely related to a clade of northern European isolates. CaCV was first detected in Australia in 1999 and is most closely related to Watermelon silver mottle virus, a serogroup IV tospovirus. The natural hosts include capsicum, tomato, peanut and Hoya spp. The virus also occurs in Thailand and Taiwan. IYSV was first found in Australia in 2003, infecting onion and leek, with the distribution in three States suggesting that the virus has been present for some time.
Resumo:
Sunflower rust caused by Puccinia helianthi is the most important disease of sunflower in Australia with the potential to cause significant yield losses in susceptible hybrids. Rapid and frequent virulence changes in the rust fungus population limit the effective lifespan of commercial cultivars and impose constant pressure on breeding programs to identify and deploy new sources of resistance. This paper contains a synopsis of virulence data accumulated over 25 years, and more recent studies of genotypic diversity and sexual recombination. We have used this synopsis, generated from both published and unpublished data, to propose the origin, evolution and distribution of new pathotypes of P. helianthi. Virulence surveys revealed that diverse pathotypes of P. helianthi evolve in wild sunflower populations, most likely because sexual recombination and subsequent selection of recombinant pathotypes occurs there. Wild sunflower populations provide a continuum of genetically heterogeneous hosts on which P. helianthi can potentially complete its sexual cycle under suitable environmental conditions. Population genetics analysis of a worldwide collection of P. helianthi indicated that Australian isolates of the pathogen are more diverse than non-Australian isolates. Additionally, the presence of the same pathotype in different genotypic backgrounds supported evidence from virulence data that sexual recombination has occurred in the Australian population of P. helianthi at some time. A primary aim of the work described was to apply our knowledge of pathotype evolution to improve resistance in sunflower to sunflower rust. Molecular markers were identified for a number of previously uncharacterised sunflower rust R-genes. These markers have been used to detect resistance genes in breeding lines and wild sunflower germplasm. A number of virulence loci that do not recombine were identified in P. helianthi. The resistance gene combinations corresponding to these virulence loci are currently being introgressed with breeding lines to generate hybrids with durable resistance to sunflower rust.