996 resultados para METAL RINGS
Resumo:
In the present work we report a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant (cationic, anionic, non ionic and polymeric), without the use of any templates. The method is simple, inexpensive, and helps one to prepare nanostructures in quick time, measured in seconds and minutes. This method has been applied successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with changes in different process parameters, such as microwave power, irradiation time, identity of solvent, type of surfactant, and its concentration.
Resumo:
Aromatic aldehydes and aryl isocyanates do not react at room temperature. However, we have shown for the first time that in the presence of catalytic amounts of group(IV) n-butoxide, they undergo metathesis at room temperature to produce imines with the extrusion of carbon dioxide. The mechanism of action has been investigated by a study of stoichiometric reactions. The insertion of aryl isocyanates into the metal n-butoxide occurs very rapidly. Reaction of the insertion product with the aldehyde is responsible for the metathesis. Among the n-butoxides of group(IV) metals, Ti((OBu)-Bu-n)(4) (8aTi) was found to be more efficient than Zr((OBu)-Bu-n)(4) (8aZr) and Hf((OBu)-Bu-n)(4) (8aHf) in carrying out metathesis. The surprisingly large difference in the metathetic activity of these alkoxides has been probed computationally using model complexes Ti(OMe)(4) (8bTi), Zr(OMe)(4) (8bZr) and Hf(OMe)(4) (8bHf) at the B3LYP/LANL2DZ level of theory. These studies indicate that the insertion product formed by Zr and Hf are extremely stable compared to that formed by Ti. This makes subsequent reaction of Zr and Hf complexes unfavorable.
Resumo:
MIPS (metal interactions in protein structures) is a database of metals in the three-dimensional acromolecular structures available in the Protein Data Bank. Bound metal ions in proteins have both catalytic and structural functions. The proposed database serves as an open resource for the analysis and visualization of all metals and their interactions with macromolecular (protein and nucleic acid) structures. MIPS can be searched via a user-friendly interface, and the interactions between metals and protein molecules, and the geometric parameters, can be viewed in both textual and graphical format using the freely available graphics plug-in Jmol. MIPS is updated regularly, by means of programmed scripts to find metal-containing proteins from newly released protein structures. The database is useful for studying the properties of coordination between metals and protein molecules. It also helps to improve understanding of the relationship between macromolecular structure and function. This database is intended to serve the scientific community working in the areas of chemical and structural biology, and is freely available to all users, around the clock, at http://dicsoft2.physics.iisc.ernet.in/mips/.
Resumo:
3C resonances of carbonyl and methyl groups in amides are shifted down-field on interaction with alkali and alkaline earth metal salts. The magnitude of the shift depends on the ionic potential of the cation. Ions like Li+ bind to the amide carbonyl group both in neat amide solutions as well as in concentrated salt solutions in water.
Resumo:
Choudhuri and Gilman (1987) considered certain implications of the hypothesis that the magnetic flux within the Sun is generated at the bottom of the convection zone and then rises through it. Taking flux rings symmetric around the rotation axis and using reasonable values of different parameters, they found that the Coriolis force deflects these flux rings into trajectories parallel to the rotation axis so that they emerge at rather high latitudes. This paper looks into the question of whether the action of the Coriolis force is subdued when the initial configuration of the flux ring has non-axisymmetries in the form of loop structures. The results depend dramatically on whether the flux ring with the loops lies completely within the convection zone or whether the lower parts of it are embedded in the stable layers underneath the convection zone. In the first case, the Coriolis force supresses the non-axisymmetric perturbations so that the flux ring tends to remain symmetric and the trajectories are very similar to those of Choudhuri and Gilman (1987). In the second case, however, the lower parts of the flux ring may remain anchored underneath the bottom of the convection zone, but the upper parts of the loops still tend to move parallel to the rotation axis and emerge at high latitudes. Thus the problem of the magnetic flux not being able to come out at the sunspot latitudes still persists after the non-axisymmetries in the flux rings are taken into account.
Resumo:
The article describes the synthesis, structure and magnetic investigations of a series of metal-organic framework compounds formed with Mn+2 and Ni+2 ions. The structures, determined using the single crystal X-ray diffraction, indicated that the structures possess two- and three-dimensional structures with magnetically active dimers, tetramers, chains, two-dimensional layers connected by polycarboxylic acids. These compounds provide good examples for the investigations of magnetic behaviour. Magnetic studies have been carried out using SQUID magnetometer in the range of 2-300 K and the behaviour indicates a predominant anti-ferromagnetic interactions, which appears to differ based on the M-O-C-O-M and/or the M-O-M (M = metal ions) linkages. Thus, compounds with carboxylate (Mn-O-C-O-Mn) connected ones, [C3N2H [Mn(H2O)''C6H3(COO)(3)''], I, [''Mn(H2O (3)''aEuroeC(12)H(8)O(COO)(2)'']center dot H2O, II, [''Mn(H2O)''aEuroeC(12)H(8)O(COO)(2)''], III, show simple anti-ferromagnetic behaviour. The compounds with Mn-O/OH-Mn connected dimer and tetramer units in [NaMn''C6H3(COO)(3)''], IV, [Mn-2(A mu(3)-OH) (H2O)(2)''C6H3(COO)(3)'']center dot 2H(2)O, V, show canted-antiferromagnetic and anti-ferromagnetic behaviour, respectively. The presence of infinite one-dimensional -Ni-OH-Ni- chains in the compound, [Ni-2(H2O)(A mu(3)-OH)(2)(C8H5NO4], VI, gives rise to ferromagnet-like behaviour at low temperatures. The compounds, [Mn-3''C6H3(COO)(3)''(2)], VII and [''Mn(OH)''(2)''C12H8O(COO)(2)''], VIII, have two-dimensional infinite -Mn-O/OH-Mn- layers with triangular magnetic lattices, which resemble the Kagome and brucite-like layer. The magnetic studies indicated canted-antiferromagnetic behaviour in both the cases. Variable temperature EPR and theoretical magnetic modelling studies have been carried out on selected compounds to probe the nature of the magnetic species and their interactions with them.
Resumo:
Two-dimensional (2D) transition metal oxide systems present exotic electronic properties and high specific surface areas, and also demonstrate promising applications ranging from electronics to energy storage. Yet, in contrast to other types of nanostructures, the question as to whether we could assemble 2D nanomaterials with an atomic thickness from molecules in a general way, which may give them some interesting properties such as those of graphene, still remains unresolved. Herein, we report a generalized and fundamental approach to molecular self-assembly synthesis of ultrathin 2D nanosheets of transition metal oxides by rationally employing lamellar reverse micelles. It is worth emphasizing that the synthesized crystallized ultrathin transition metal oxide nanosheets possess confined thickness, high specific surface area and chemically reactive facets, so that they could have promising applications in nanostructured electronics, photonics, sensors, and energy conversion and storage devices.
Resumo:
Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile TiO2 structure. Also for the first time, a Dye-sensitized Solar Cell (DSC) combining a HRT is reported in conjunction with a high-extinction-coefficient metal-free organic sensitizer (D149), achieving a conversion efficiency of 5.5%, which is superior to ones employing P25 (4.5%), comparable to state-of-the-art commercial transparent titania anatase paste (5.8%). Further to this, an overall conversion efficiency 8.6% was achieved when HRT was used as the light scattering layer, a considerable improvement over the commercial transparent/reflector titania anatase paste (7.6%), a significantly smaller gap in performance than has been seen previously.
Resumo:
In each of the zinc(II) complexes bis(acetylacetonato-kappa(2)O,O')(1,10-phenanthroline-kappa(2)N,N')zinc(II), [Zn(C(5)H(7)O(2))(2)(C(12)H(8)N(2))], (I), and bis(acetylacetonato-kappa(2)O,O')(2,2'-bipyridine-kappa(2)N,N')zinc(II), [Zn(C(5)H(7)O(2))(2)(C(10)H(8)N(2))], (II), the metal center has a distorted octahedral coordination geometry. Compound (I) has crystallographically imposed twofold symmetry, with Z' = 0.5. The presence of a rigid phenanthroline group precludes intramolecular hydrogen bonding, whereas the rather flexible bipyridyl ligand is twisted to form an intramolecular C-H...O interaction [the chelated bipyridyl ligand is nonplanar, with the pyridyl rings inclined at an angle of 13.4 (1) degrees]. The two metal complexes are linked by dissimilar C-H...O interactions into one-dimensional chains. The present study demonstrates the distinct effects of two commonly used ligands, viz. 1,10-phenanthroline and 2,2'-bipyridine, on the structures of metal complexes and their assembly.
Resumo:
Various metal salts (Na, K, Rb, and NH4) of monochloro acetic acid were prepared and the Cl-35 nuclear quadrupole resonance frequencies were measured at room temperature. A comparative study of nuclear quadrupole resonance frequencies of monochloro acetic acid and its metal salts is carried out. The frequency shifts obtained in the respective metal chloroacetates are used to estimate the changes in the ionicity of C-Cl bond. Further, the changes in the ionicity of C-Cl bond were used to estimate the percentage of intra-molecular charge transfer between respective cation-anion of the metal salts of chloro acetic acid. The nuclear quadrupole resonance frequency is found to decrease with increasing ionicity of the alkali metal ion.
Resumo:
Transition metal [Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)] complexes of a new Schiff base, 3-acetylcoumarin-o-aminobenzoylhydrazone were synthesized and characterized by elemental analyses, magnetic moments, conductivity measurements, spectral [Electronic, IR, H-1 and C-13 NMR, EPR] and thermal studies. The ligand crystallizes in the monoclinic system, space group P2(1)/n with a = 9.201(5), b = 16.596( 9), c = 11.517(6) angstrom, beta= 101.388(9)degrees, V = 1724.2 (17) angstrom(3) and Z = 4. Conductivity measurements indicated Mn(II) and Co(II) complexes to be 1 : 1 electrolytes whereas Ni(II), Cu(II), Zn(II) and Cd(II) complexes are non-electrolytes. Electronic spectra reveal that all the complexes possess four-coordinate geometry around the metal.
Resumo:
In our effort to explore the use of the sulfite ion to design hybrid and open-framework materials, we have been able to prepare, under hydrothermal conditions, zero-dimensional [Zn(C12H8N2)(SO3)]center dot 2H(2)O, I (a = 7.5737(5) angstrom, b = 10.3969(6) angstrom, c = 10.3986(6) angstrom, alpha = 64.172(1)degrees, beta = 69.395(1)degrees, gamma = 79.333(1)degrees, Z = 2, and space group P (1) over bar), one-dimensional [Zn-2(C12H8N2)(SO3)(2)(H2O)], II (a = 8.0247(3) angstrom, b = 9.4962(3) angstrom, c = 10.2740(2) A, alpha = 81.070(1)degrees, beta = 80.438(1)degrees, gamma = 75.66(5)degrees, Z = 2, and space group P (1) over bar), two-dimensional [Zn-2(C10H8N2)(SO3)(2)]center dot H2O, III (a = 16.6062(1) angstrom, b = 4.7935(1) angstrom, c = 19.2721(5) angstrom, beta = 100.674(2)degrees, Z = 4, and space group C2/c), and three-dimensional [Zn-4(C6H12N2)(SO3)(4)(H2O)(4)], IV (a = 11.0793(3) angstrom, c = 8.8246(3) angstrom, Z = 2, and space group P42nm), of which the last three are coordination polymers. A hybrid open-framework sulfite-sulfate of the composition [C2H10N2][Nd(SO3)(SO4)(H2O)](2), V (a = 9.0880(3) angstrom, b = 6.9429(2) angstrom, c = 13.0805(5) A, beta = 91.551(2)degrees, Z = 2, and space group P2(1)/c), with a layered structure containing metal-oxygen-metal bonds has also been described.
Resumo:
Creating nanoscale heterostructures with molecular-scale (<2 nm) metal wires is critical for many applications and remains a challenge. Here, we report the first time synthesis of nanoscale heterostructures with single-crystal molecular-scale Au nanowires attached to different nanostructure substrates. Our method involves the formation of Au nanoparticle seeds by the reduction of rocksalt AuCl nanocubes heterogeneously nucleated on the Substrates and subsequent nanowire growth by oriented attachment of Au nanoparticles from the Solution phase. Nanoscale heterostructures fabricated by such site-specific nucleation and growth are attractive for many applications including nanoelectronic device wiring, catalysis, and sensing.
Resumo:
In this paper, we report a systematic study of low frequency 1∕fα resistance fluctuation in thin metal films (Ag on Si) at different stages of damage process when the film is subjected to high current stressing. The resistance fluctuation (noise) measurement was carried out in situ using a small ac bias that has been mixed with the dc stressing current. The experiment has been carried out as a function of temperature in the range of 150–350 K. The experiment establishes that the current stressed film, as it undergoes damage due to various migration forces, develops an additional low-frequency noise spectral power that does not have the usual 1∕f spectral shape. The magnitude of extra term has an activated temperature dependence (activation energy of ≈0.1 eV) and has a 1∕f1.5 spectral dependence. The activation energy is the same as seen from the temperature dependence of the lifetime of the film. The extra 1∕f1.5 spectral power changes the spectral shape of the noise power as the damage process progress. The extra term likely arising from diffusion starts in the early stage of the migration process during current stressing and is noticeable much before any change can be detected in simultaneous resistance measurements. The experiment carried out over a large temperature range establish a strong correlation between the evolution of the migration process in a current stressed film and the low-frequency noise component that is not a 1∕f noise.