948 resultados para MAGNETIC-FIELD AMPLIFICATION
Resumo:
OBJECTIVES: To analyse the results of recent studies not yet included in a 2003 report of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) on occupational exposure to low-frequency electromagnetic fields as potential risk factor for neurodegenerative diseases. METHODS: A literature search was conducted in the online databases of PubMed, ISI Web of Knowledge, DIMDI and COCHRANE, as well as in specialised databases and journals. Eight studies published between January 2000 and July 2005 were included in the review. RESULTS: The findings of these studies contribute to the evidence of an association between occupational magnetic field exposure and the risk of dementia. Regarding amyotrophic lateral sclerosis, the recent results confirm earlier observations of an association with electric and electronic work and welding. Its relationship with magnetic field exposure remains unsolved. There are only few findings pointing towards an association between magnetic field exposure and Parkinson's disease. CONCLUSIONS: The epidemiological evidence for an association between occupational exposure to low-frequency electromagnetic fields and the risk of dementia has increased during the last five years. The impact of potential confounders should be evaluated in further studies.
Resumo:
Hall-effect thruster (HET) cathodes are responsible for the generation of the free electrons necessary to initiate and sustain the main plasma discharge and to neutralize the ion beam. The position of the cathode relative to the thruster strongly affects the efficiency of thrust generation. However, the mechanisms by which the position affects the efficiency are not well understood. This dissertation explores the effect of cathode position on HET efficiency. Magnetic field topology is shown to play an important role in the coupling between the cathode plasma and the main discharge plasma. The position of the cathode within the magnetic field affects the ion beam and the plasma properties of the near-field plume, which explains the changes in efficiency of the thruster. Several experiments were conducted which explored the changes of efficiency arising from changes in cathode coupling. In each experiment, the thrust, discharge current, and cathode coupling voltage were monitored while changes in the independent variables of cathode position, cathode mass flow and magnetic field topology were made. From the telemetry data, the efficiency of the HET thrust generation was calculated. Furthermore, several ion beam and plasma properties were measured including ion energy distribution, beam current density profile, near-field plasma potential, electron temperature, and electron density. The ion beam data show how the independent variables affected the quality of ion beam and therefore the efficiency of thrust generation. The measurements of near-field plasma properties partially explain how the changes in ion beam quality arise. The results of the experiments show that cathode position, mass flow, and field topology affect several aspects of the HET operation, especially beam divergence and voltage utilization efficiencies. Furthermore, the experiments show that magnetic field topology is important in the cathode coupling process. In particular, the magnetic field separatrix plays a critical role in impeding the coupling between cathode and HET. Suggested changes to HET thruster designs are provided including ways to improve the position of the separatrix to accommodate the cathode.
Resumo:
An electrospray source has been developed using a novel new fluid that is both magnetic and conductive. Unlike conventional electrospray sources that required microfabricated structures to support the fluid to be electrosprayed, this new electrospray fluid utilizes the Rosensweig instability to create the structures in the magnetic fluid when an external magnetic field was applied. Application of an external electric field caused these magnetic fluid structures to spray. These fluid based structures were found to spray at a lower onset voltage than was predicted for electrospray sources with solid structures of similar geometry. These fluid based structures were also found to be resilient to damage, unlike the solid structures found in traditional electrospray sources. Further, experimental studies of magnetic fluids in non-uniform magnetic fields were conducted. The modes of Rosensweig instabilities have been studied in-depth when created by uniform magnetic fields, but little to no studies have been performed on Rosensweig instabilities formed due to non-uniform magnetic fields. The measured spacing of the cone-like structures of ferrofluid, in a non-uniform magnetic field, were found to agree with a proposed theoretical model.
Resumo:
We report the first observation of protons in the near-lunar (100-200 km from the surface) and deeper (near anti-subsolar point) plasma wake when the interplanetary magnetic field (IMF) and solar wind velocity (vsw) are parallel (aligned flow; angle between IMF and vsw≤10°). More than 98% of the observations during aligned flow condition showed the presence of protons in the wake. These observations are obtained by the Solar Wind Monitor sensor of the Sub-keV Atom Reflecting Analyser experiment on Chandrayaan-1. The observation cannot be explained by the conventional fluid models for aligned flow. Back tracing of the observed protons suggests that their source is the solar wind. The larger gyroradii of the wake protons compared to that of solar wind suggest that they were part of the tail of the solar wind velocity distribution function. Such protons could enter the wake due to their large gyroradii even when the flow is aligned to IMF. However, the wake boundary electric field may also play a role in the entry of the protons into the wake.
Resumo:
We study the influence of a background uniform magnetic field and boundary conditions on the vacuum of a quantized charged spinor matter field confined between two parallel neutral plates; the magnetic field is directed orthogonally to the plates. The admissible set of boundary conditions at the plates is determined by the requirement that the Dirac Hamiltonian operator be self-adjoint. It is shown that, in the case of a sufficiently strong magnetic field and a sufficiently large separation of the plates, the generalized Casimir force is repulsive, being independent of the choice of a boundary condition, as well as of the distance between the plates. The detection of this effect seems to be feasible in the foreseeable future.
Resumo:
Results from epidemiologic studies suggest that persons working in occupations with presumed electric and magnetic field (EMF) exposures are at increased risk of brain cancer. This study utilized data from a completed, population-based, interview case-control study of central nervous system (CNS) tumors and employment in the petrochemical industry to test the hypothesis that employment in EMF-related occupations increases CNS tumor risk. A total of 375 male residents of the Texas-Louisiana Gulf Coast Area, age 20 to 79, with primary neuroglial CNS tumors diagnosed during the period 1980-84 were identified. A population-based comparison group of 450 age, race and geographically matched males was selected. Occupational histories and potential risk factor data were collected via personal interviews with study subjects or their next-of-kin.^ Adjusted odds ratios were less than 1.0 for persons ever employed in an electrical occupation (OR = 0.65; 95% CI = 0.40-1.09) or whose usual occupation was electrical (OR = 0.76; 95% CI = 0.33-1.73). Relative risk estimates did not increase significantly as time since first employment or duration of employment increased. Examination of CNS tumor risk by high (OR = 0.80), medium (OR = 0.88) and low (OR = 0.45) exposure categories for persons whose usual occupation was electrical did not indicate a dose-response pattern. In addition, the mean age of exposed cases was not significantly younger than that for unexposed cases. Analysis of risk by probability of exposure to EMFs showed non-significant elevations in the adjusted odds ratio for definite exposed workers defined by their usual occupation (OR = 1.78; 95% CI = 0.70-4.51) and ever/never employed status (OR = 1.54; 95% CI = 0.17-4.91).^ These findings suggest that employment in occupations with presumed EMF exposures does not increase CNS tumor risk as was suggested by previous investigations. The results of this study also do not support the EMF-tumor promotion hypothesis. ^
Resumo:
An asymptotic analysis of the Langmuir-probe problem in a quiescent, fully ionized plasma in a strong magnetic field is performed, for electron cyclotron radius and Debye length much smaller than probe radius, and this not larger than either ion cyclotron radius or mean free path. It is found that the electric potential, which is not confined to a sheath, controls the diffusion far from the probe; inside the magnetic tube bounded by the probe cross section the potential overshoots to a large value before decaying to its value in the body of the plasma. The electron current is independent of the shape of the body along the field and increases with ion temperature; due to the overshoot in the potential, (1) the current at negative voltages does not vary exponentially, (2) its magnitude is strongly reduced by the field, and (3) the usual sharp knee at space potential, disappears. In the regions of the C-V diagram studied the ion current is negligible or unaffected by the field. Some numerical results are presented.The theory, which fails beyond certain positive voltage, fields useful results for weak fields, too.
Resumo:
A kinetic approach is used to develop a theory of electrostatic probes in a fully ionized plasma in the presence of a magnetic field. A consistent asymptotic expansion is obtained assuming that the electron Larmor radius is small compared to the radius of the probe. The order of magnitude of neglected terms is given. It is found that the electric potential within the tube of force defined by the cross section of the probe decays non-mono tonic ally from the probe; this bump disappears at a certain probe voltage and the theory is valid up to this voltage. The transition region, which extends beyond plasma potential, is not exponential. The possible saturation of the electron current is discussed. Restricted numerical results are given; they seem to be useful for weaker magnetic fields down to the zero-field limit. Extensions of the theory a r e considered.
Resumo:
In hybrid and electric vehicles, passengers sit very close to an electric system of significant power, which means that they may be subjected to high electromagnetic fields. The hazards of long-term exposure to these fields must be taken into account when designing electric vehicles and their components. Among all the electric devices present in the power train, the electronic converter is the most difficult to analyze, given that it works with different frequencies. In this paper, a methodology to evaluate the magnetic field created by a power electronics converter is proposed. After a brief overview of the recommendations of electromagnetic fields exposure, the magnetic field produced by an inverter is analyzed using finite element techniques. The results obtained are compared to laboratory measurements, taken from a real inverter, in order to validate the model. Finally, results are used to draw some conclusions regarding vehicle design criteria and magnetic shielding efficiency.
Resumo:
Engineering of devices and systems such as magnets, fault current limiters or cables, based on High Temperature Superconducting wires requires a deep characterization of the possible degradation of their properties by handling at room temperature as well as during the service life thus establishing the limits for building up functional devices and systems. In the present work we report our study regarding the mechanical behavior of spliced joints between commercial HTS coated conductors based on YBCO at room temperature and service temperature, 77 K. Tensile tests under axial stress and the evolution of the critical current and the electric resistance of the joints have been measured. The complete strain contour for the tape and the joint has been obtained by using Digital Image Correlation. Also, tensile tests under external magnetic field have been performed and the effect of the applied field on the critical current and the electric resistance of the joints has been studied. Finally, a preliminary numerical study by means of Finite Element Method (FEM) of the mechanical behavior of the joints between commercial HTS is presented.