929 resultados para Lyapunov Exponent
Resumo:
The phenomena of the 'piling up' and 'sinking-in' of surface profiles in conical indentation in elastic-plastic solids with work hardening are studied using dimensional and finite-element analysis. The degree of sinking in and piling up is shown to depend on the ratio of the initial yield strength Y to Young's modulus E and on the work-hardening exponent n. The widely used procedure proposed by Oliver and Pharr for estimating contact depth is then evaluated systematically. By comparing the contact depth obtained directly from finite-element calculations with that obtained from the initial unloading slope using the Oliver-Pharr procedure, the applicability of the procedure is discussed.
Resumo:
In this paper, a systematic approach is proposed to obtain the macroscopic elastic-plastic constitutive relation of particle reinforced composites (PRC). The strain energy density of PRC is analyzed based on the cell model, and Che analytical formula for the macro-constitutive relation of PRC is obtained. The strength effects of volume fraction of the particle and the strain hardening exponent of matrix material on the macro-constitutive relation are investigated, the relation curve of strain versus stress of PRC is calculated in detail. The present results are consistent; with the results given in the existing references.
Resumo:
A numerical model is proposed to simulate fracture induced by the coalescence of numerous microcracks, in which the condition for coalescence between two randomly nucleated microcracks is determined in terms of a load-sharing principle. The results of the simulation show that, as the number density of nucleated microcracks increases, stochastic coalescence first occurs followed by a small fluctuation, and finally a newly nucleated microcrack triggers a cascade coalescence of microcracks resulting in catastrophic failure. The fracture profiles exhibit self-affine fractal characteristics with a universal roughness exponent, but the critical damage threshold is sensitive to details of the model. The spatiotemporal distribution of nucleated microcracks in the vicinity of critical failure follows a power-law behaviour, which implies that the microcrack system may evolve to a critical state.
Resumo:
The longitudinal structure function (LSF) and the transverse structure function (TSF) in isotropic turbulence are calculated using a vortex model. The vortex model is composed of the Rankine and Burgers vortices which have the exponential distributions in the vortex Reynolds number and vortex radii. This model exhibits a power law in the inertial range and satisfies the minimal condition of isotropy that the second-order exponent of the LSF in the inertial range is equal to that of the TSF. Also observed are differences between longitudinal and transverse structure functions caused by intermittency. These differences are related to their scaling differences which have been previously observed in experiments and numerical simulations.
Resumo:
Using dimensional analysis and finite element calculations, we derive simple scaling relationships for loading and unloading curve, contact depth, and hardness. The relationship between hardness and the basic mechanical properties of solids, such as Young's modulus, initial yield strength, and work-hardening exponent, is then obtained. The conditions for 'piling-up' and 'sinking-in' of surface profiles during indentation are determined. A method for estimating contact depth from initial unloading slope is examined. The work done during indentation is also studied. A relationship between the ratio of hardness to elastic modulus and the ratio of irreversible work to total work is discovered. This relationship offers a new method for obtaining hardness and elastic modulus. Finally, a scaling theory for indentation in power-law creep solids using self-similar indenters is developed. A connection between creep and 'indentation size effect' is established.
Resumo:
We present results on the stability of compressible inviscid swirling flows in an annular duct. Such flows are present in aeroengines, for example in the by-pass duct, and there are also similar flows in many aeroacoustic or aeronautical applications. The linearised Euler equations have a ('critical layer') singularity associated with pure convection of the unsteady disturbance by the mean flow, and we focus our attention on this region of the spectrum. By considering the critical layer singularity, we identify the continuous spectrum of the problem and describe how it contributes to the unsteady field. We find a very generic family of instability modes near to the continuous spectrum, whose eigenvalue wavenumbers form an infinite set and accumulate to a point in the complex plane. We study this accumulation process asymptotically, and find conditions on the flow to support such instabilities. It is also found that the continuous spectrum can cause a new type of instability, leading to algebraic growth with an exponent determined by the mean flow, given in the analysis. The exponent of algebraic growth can be arbitrarily large. Numerical demonstrations of the continuous spectrum instability, and also the modal instabilities are presented.
Resumo:
The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly using the conventional elastic-plastic theory. It is because that no length scale parameters are involved in the conventional theory. In the present research, using the strain gradient plasticity theory, a systematic research of the particle size effect in the particulate metal matrix composite is carried out. The roles of many composite factors, such as: the particle size, the Young's modulus of the particle, the particle aspect ratio and volume fraction, as well as the plastic strain hardening exponent of the matrix material, are studied in detail. In order to obtain a general understanding for the composite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to check the strength dependence of the smooth or non-smooth particle surface. Finally, the prediction results will be applied to the several experiments about the ceramic particle-reinforced metal-matrix composites. The material length scale parameter is predicted.
Resumo:
Resumen: El objetivo es determinar utilizando las mediciones acústicas, qué información es más relevante para el oyente al momento de categorizar el grado general de disfonía. Se eligieron 8 (4 voces femeninas y 4 voces masculinas. Cada emisión fue evaluada auditivo perceptualmente a través del item G de la escala GRBAS por 10 oyentes experimentados y acústicamente mediante medidas de aperiodicidad, ruido y caos. El estudio estadístico de análisis discriminante señala la importancia de GNE, Jit y Jitter_cc y Lyapunov como parámetros predictores del grado general de disfonía. La aplicación del método k-means evidencia que existen rasgos en los parámetros acústicos empleados que permiten agrupar objetivamente las voces estudiadas con 100% de precisión para la clase 0, 96% a la clase 2 y 79% a la clase 3. Un mayor número y variabilidad de casos se necesita a fin de verificar los resultados preliminares.
Resumo:
In this paper, we study some degenerate parabolic equation with Cauchy-Dirichlet boundary conditions. This problem is considered in little Holder spaces. The optimal regularity of the solution v is obtained and is specified in terms of those of the second member when some conditions upon the Holder exponent with respect to the degeneracy are satisfied. The proofs mainly use the sum theory of linear operators with or without density of domains and the results of smoothness obtained in the study of some abstract linear differential equations of elliptic type.
Resumo:
On the basis of the Local Equilibrium Model (LEM), fine particles with large Richardson-Zaki exponent n show, under certain conditions during bed expansion and collapse, different dynamic behavior from particles with small n. For an expansion process there may be a concentration discontinuity propagating upward from the distributor, and, on the contrary, for a collapse process there may be a progressively broadening and upward-propagating continuous transition zone instead of discontinuity. The predictions of the bed height variation and the discontinuity trace have been validated experimentally. (c) 2007 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Resumo:
A set of scaling criteria of a polymer flooding reservoir is derived from the governing equations, which involve gravity and capillary force, compressibility of water, oil, and rock, non-Newtonian behavior of the polymer solution, absorption, dispersion, and diffusion, etc. A numerical approach to quantify the dominance degree of each dimensionless parameter is proposed. With this approach, the sensitivity factor of each dimensionless parameter is evaluated. The results show that in polymer flooding, the order of the sensitivity factor ranges from 10(-5) to 10(0) and the dominant dimensionless parameters are generally the ratio of the oil permeability under the condition of the irreducible water saturation to water permeability under the condition of residual oil saturation, density, and viscosity ratios between water and oil, the reduced initial oleic phase saturation and the shear rate exponent of the polymer solution. It is also revealed that the dominant dimensionless parameters may be different from case to case. The effect of some physical variables, such as oil viscosity, injection rate, and permeability, on the dominance degree of the dimensionless parameters is analyzed and the dominant ones are determined for different cases.
Resumo:
The plane strain asymptotic fields for cracks terminating at the interface between elastic and pressure-sensitive dilatant material are investigated in this paper. Applying the stress-strain relation for the pressure-sensitive dilatant material, we have obtained an exact asymptotic solution for the plane strain tip fields for two types of cracks, one of which lies in the pressure-sensitive dilatant material and the other in the elastic material and their tips touch both the bimaterial interface. In cases, numerical results show that the singularity and the angular variations of the fields obtained depend on the material hardening exponent n, the pressure sensitivity parameter mu and geometrical parameter lambda.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
This paper considers the chaos synchronization of the modified Chua's circuit with x vertical bar x vertical bar function. We firstly show that a couple of the modified Chua systems with different parameters and initial conditions can be synchronized using active control when the values of parameters both in drive system and response system are known aforehand. Furthermore, based on Lyapunov stability theory we propose an adaptive active control approach to make the states of two identical Chua systems with unknown constant parameters asymptotically synchronized. Moreover the designed controller is independent of those unknown parameters. Numerical simulations are given to validate the proposed synchronization approach.
Resumo:
Synchronous chaos is investigated in the coupled system of two Logistic maps. Although the diffusive coupling admits all synchronized motions, the stabilities of their configurations are dependent on the transverse Lyapunov exponents while independent of the longitudinal Lyapunov exponents. It is shown that synchronous chaos is structurally stable with respect to the system parameters. The mean motion is the pseudo-orbit of an individual local map so that its dynamics can be described by the local map. (C) 2004 Elsevier Ltd. All rights reserved.