983 resultados para Luminescence lifetimes
Resumo:
X-2-y(2)SiO(5):A (A = Eu3+, Tb3+, Ce3+) phosphor films and their patterning were fabricated by a sol-gel process combined with a soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy (SEM) optical microscopy and photoluminescence (PL) were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 900 degreesC with X-1-Y2SiO5, which transformed completely to X-2-Y2SiO5 at 1250 degreesC. Patterned thin films with different band widths (5 pin spaced by 5 pm and 16 pm spaced by 24 pm) were obtained by a soft lithography technique (micromoulding in capillaries, MIMIC). The SEM and AFM study revealed that the nonpattemed phosphor films were uniform and crack free, and the films mainly consisted of closely packed grains with an average size of 350 run. The doped rare earth ions (A) showed their characteristic emissions in X-2-Y2SiO5 phosphor films, i.e., D-5(0)-F-7(J) (J = 0, 1, 2,3,4) for Eu3+, D-5(3), (4)-F-7(J) (J = 6, 5, 4, 3) for Tb3+ and 5d (D-2)-4f (F-2(2/5),(2/7)) for Ce3+, respectively. The optimum doping concentrations for EU3+, Tb3+ were determined to be 13 and 8 mol% of Y3+ in X-2-Y2SiO5 films, respectively.
Resumo:
A novel long-lasting phosphor CdSiO3:Mn2+ is reported in this paper. The Mn2+-doped CdSiO3 phosphor emits orange light with CIE chromaticity coordinates x = 0.5814 and y = 0.4139 under 254 nm UV light excitation. In the emission spectrum of 1% Mn2+-doped CdSiO3 phosphor, there is a broad emission band centered at 575 nm which can be attributed to the,pin-forbidden transition of the d-orbital electron associated with the Mn2+ ion. The phosphorescence can be seen by the naked eyes in the dark clearly even after the 254 nm UV irradiation have been removed for about 1 h. The mechanism of the origin of the long-lasting phosphorescence was discussed using the thermoluminescence curves.
Resumo:
The luminescence properties of CdSio(3):RE3+ phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-state method, and characterized by XRD and photoluminescence (PL) spectra. The results of XRD measurement indicate that the products fired under 1050 degreesC for 3 h have a good crystallization without any detectable amount of impure phase. The PL spectra measurement results show that CdSiO3 is a novel self-activated luminescent matrix. When rare earth ions such as Y3+, La3+, Gds(3+), Lus(3+), Ce3+, Nd3+, Ho3+, Era(3+), Tm3+ and Yb3+ are introduced into the CdSi03 host, one broadband centered at about 420 nm resulted from traps can be observed. In the case of other earth ions which show emissions at the visible spectrum region, such as Pr3+, Sm3+, Eu3+, Tb3+ and Dy3+, the mixture of their characteristic line emissions with the similar to 420 nm strong broadband luminescence results in various emitting colors. As a consequence, different emitting colors can be attairied via introducing certain appropriate active ions into the CdSiO3 matrix. In additional, this kind of phosphors shows good long-lasting properties when excited by UV light. All the results show that CdSiO3 is a potential luminance matrix.
Resumo:
Lanthanide-doped sol-gel-derived materials are an attractive type of luminescent materials that can be processed at ambient temperatures. However, the solubility of the lanthanide complexes in the matrix is a problem and it is difficult to obtain a uniform distribution of the complexes. Fortunately, these problems can be solved by covalently linking the lanthanide complex to the sol-gel-derived matrix. In this study, luminescent Eu3+ and Tb3+ bipyridine complexes were immobilized on sol-gel-derived silica. FT-IR, DTA-TG and luminescence spectra, as well as luminescence decay analysis, were used to characterize the obtained hybrid materials. The organic groups from the bipyridine-Si moiety were mostly destroyed between 220 and 600 degreesC. The luminescence properties of lanthanide bipyridine complexes anchored to the backbone of the silica network and the corresponding pure complexes were comparatively investigated, which indicates that the lanthanide bipyridine complex was formed during the hydrolysis and co-condensation of TEOS and modified bipyridine. Excitation at the ligand absorption wavelength (336 nm for the hybrid materials and 350 nm for the pure complexes) resulted in strong emission of the lanthanide ions: Eu3+ D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4) and Tb3+ D-5(4)-F-7(J) (J = 6, 5, 4, 3) emission lines due to efficient energy transfer from the ligands to the lanthanide ions.
Resumo:
A new kind of hybrid self-assembled film was obtained by means of alternating deposition of the polyoxometalate (POM), K-13[Eu(SiW11-O-39)(2)], and polyacrylamide (PAA) on the 3-aminopropylsilanized precursor film. The experimental results showed that the polyanions were successfully incorporated into the self-assembled multilayers of the polyacrylamide. The scanning electron microscopy (SEM) was taken to study the surface morphology of the film. The X-ray photoelectron spectra (XPS) verified that the polyoxometalates were incorporated into the multilayer films with a certain adsorption interaction. The effects of the polyacrylamide on the luminescence of the polyoxometalate were discussed in detail. The luminescence spectra showed that the energy was transferred from the ligands to the Eu3+ ions in the self-assembled films.
Resumo:
Ca2Al2SiO7:Eu3+ was prepared by the sol-gel method. Through the emission spectrum of Eu3+ ion, the fluorescence parameters such as Omega(i) (i = 2,4) and radiative transition probabilities of D-5(0)-F-7(j) were calculated. The Pb2+ ion with bigger radius has an effect on the fluorescence spectra of Eu3+ which can be explained by the structure of the matrix. Simultaneously, the energy transfers between mercury-like ions (Pb2+ and Bi3+) and Eu3+ ion were observed. The D-5(4) and D-5(2) energy levels of Eu3+ are the resonance ones for Pb2+ ion.
Resumo:
Nanocrystals of SrAl2O4:Eu2+ have been prepared by combustion synthesis. The results of XRD indicated that the resulting SrAl2O4:Eu2+ nanocrystals have a reduced and distorted monoclinic lattice compared with bulk materials. Both the excitation and emission spectra of SrAl2O4:Eu2+ nanocrystals shifts to higher energies in contrast to the bulk materials. The band structure calculation is performed using first-principles full potential-linearized augmented plane wave method within density functional theory. The calculated results are in reasonable agreement with our experimental results.
Resumo:
Ca2Gd8(SiO4)(6)O-2: A(A = Ph2+, Tm3+) phosphors were prepared through the sol-gel process. X-ray diffraction (XRD), scanning electron microseopy(SEM) and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicate that the phosphors crystallized completely at 1000 degreesC. SEM study reveals that the average grain size is 300 similar to 1000 nm. In Ca2Gd8(SiO4)(6)O-2: Tm3+ phosphors, the Tm3+ shows its characteristic blue emission at 456 nm (D-1(2)-F-3(4)) upon excitation into its H-3(6)-D-1(2)(361 nm), with an optimum doping concentration of 1 mol% of Gd3+ in the host lattices. In Ca2Gd8(SiO4)(6)O-2: Pb2+, Tm3+ phosphors, excitation into the Ph2+ at 266 nm (S-1(0)-P-3(1)) yields the emissions of Gd3+ at 311 nm (P-6-S-8) and Tm3+ at 367 nm (D-1(2)-H-3(6)) and 456 our (D-1(2)-F-3(4)), indicating that energy transfer processes of Pb2+-Gd3+ and Ph2+-Tm3+ have occur-red in the host lattices.
Resumo:
Single-crystalline C-60 center dot 1m-xylene nanorods with a hexagonal structure were successfully synthesized by evaporating a C-60 solution in m-xylene at room temperature. The ratio of the length to the diameter of the nanorods can be controlled in the range of approximate to 10 to over 1000 for different applications. The photoluminescence (PL) intensity of the nanorods is about 2 orders of magnitude higher than that for pristine C-60 crystals in air. Both UV and Raman results indicate that there is no charge transfer between C-60 and m-xylene. It was found that the interaction between C-60 and m-xylene molecules is of the van der Waals type. This interaction reduces the icosahedral symmetry of C-60 molecule and induces strong PL from the solvate nanorods.
Resumo:
Indium hydroxide, In(OH)(3), nano-microstructures with two kinds of morphology, nanorod bundles (around 500 nm in length and 200 nm in diameter) and caddice spherelike agglomerates (around 750 - 1000 nm in diameter), were successfully prepared by the cetyltrimethylammonium bromide (CTAB)/water/cyclohexane/n-pentanol microemulsion-mediated hydrothermal process. Calcination of the In(OH)(3) crystals with different morphologies (nanorod bundles and spheres) at 600 degrees C in air yielded In2O3 crystals with the same morphology. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The pH values of microemulsion play an important role in the morphological control of the as-formed In(OH)(3) nano-microstructures from the hydrothermal process. The formation mechanisms for the In( OH) 3 nano- microstructures have been proposed on an aggregation mechanism. In2O3 nanorod bundles and spheres show a similar blue emission peaking around 416 and 439 nm under the 383-nm UV excitation, which is mainly attributed to the oxygen vacancies in the In2O3 nano-microstructures.
Resumo:
A facile CE method coupled with tris(2,2'-bipyridyl) ruthenium(ll)-based electrochem iluminescence [Ru(bpy)(3)(2+)] detection was developed for simultaneous determination of Aconitum alkaloids, i.e., hypaconitine (HA), aconitine (AC), and mesaconitine (MA) in baseline separation. The optimal separation of these Aconitum alkaloids was achieved in a fused-silica capillary column (50 cm x 25 mu m id) with 30 mM phosphate solution (pH 8.40) as running buffer at 12 kV applied voltage. The three alkaloids can be determined within 10 min by a single run. The calibration curves showed a linear range from 2.0 x 10(-7) to 2.0 x 10(-5) M for HA, 3.4 x 10(-7) to 1.7 x 10(-5) M for AC, and 3.8 x 10(-7) to 1.9 x 10(-5) M for MA. The RSDs; for all analytes were below 3.01%. Good linear relationships were found with correlation coefficients for all analytes exceeding 0.993. The detection limits were 2.0 x 10(-8) M for HA, 1.7 x 10(-7) M for AC, and 1.9 x 10(-7) M for MA under optimal conditions. This method was successfully applied to determine the three alkaloids in Aconitum plants.
Resumo:
Nanocrystalline CaWO4 and Eu3+ (Tb3+)-doped CaWO4 phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the Pechini sol-gel method, resulting in the formation of SiO2@CaWO4, SiO2@CaWO4:Eu3+/Tb3+, core-shell structured particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT-IR indicate that CaWO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the FESEM and TEM images. The PL and CL demonstrate that the SiO2@CaWO4 sample exhibits blue emission band WO42- with a maximum at 420 nm (lifetime = 12.8 mu s) originated from the 4 groups, while SiO2@CaWO4:Eu3+ and SiO2@CaWO4:Tb3+ show additional red emission dominated by 614 nm (Eu3+:D-5(0)-F-7(2) transition, lifetime = 1.04 ms) and green emission at 544 nm (Tb3+:D-5(4)-F-7(5) transition, lifetime = 1.38 ms), respectively.
Resumo:
X-1-y(2)SiO(5):Eu3+ and X-1-Y2SiO5:Ce3+ and/or Tb3+ phosphor layers have been coated on nonaggregated, monodisperse, submicron spherical SiO2 particles by a sol-gel process, followed by surface reaction at high temperature (1000 degrees C), to give core/shell structured SiO2@Y2SiO5:Eu3+ and SiO2@Y2SiO5:Ce3+/Tb3+ particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), TEM, photoluminescence (PL), low voltage cathodoluminescence (CL), and time-resolved PL spectra and lifetimes are used to characterize these materials. The XRD results indicate that X-1-Y2SiO5 layers have been successfully coated on the sur- face Of SiO2 particles, as further verified by the FESEM and TEM images. The PL and CL studies suggest that SiO2@Y2SiO5:Eu3+, SiO2@Y2SiO5:Tb3+ (or Ce3+/Tb3+), and SiO2@Y2SiO5:Ce3+ core/shell particles exhibit red (Eu3+, 613 rim: D-5(0)-F-7(2)), green (Tb3+, 542nm: D-5(4)-F-7(5)), or blue (Ce3+, 450nm: 5d-4f) luminescence, respectively. Pl, excitation, emission, and time-resolved spectra demonstrate that there is an energy transfer from Ce3+ to Tb3+ in the SiO2@Y2SiO5:Ce3+,Tb3+ core/shell particles.
Resumo:
Nanocyrstalline LaGaO3 and Dy3+- and Eu3+-doped LaGaO3 were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the samples. XRD reveals that the samples begin to crystallize at 900 degrees C and pure LaGaO3 phase can be obtained at 1000 degrees C. FE-SEM images indicate that the Dy3+- and Eu3+-doped LaGaO3 samples are both composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light and low voltage electron beams (1-5 kV), the undoped LaGaO3 sample shows a strong blue emission peaking at 433 nm, and the Dy3+- and Eu3+-doped LaGaO3 samples show their characteristic emissions of Dy3+ (F-4(9/2)-H-6(15/2) and F-4(9/2)-H-6(13/2) transitions) and Eu3+ (D-5(0,1,2)-F-7(1,2,3,4) transitions), respectively. The relevant luminescence mechanisms are discussed.
Resumo:
Nanocrystalline CaTiO3:Pr3+ phosphor layers were coated on nonaggregated, monodisperse, and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2-CaTiO3:Pr3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2-CaTiO3:Pr3+ phosphor particles. The obtained core-shell structured phosphors consist of well dispersed submicron spherical particles with a narrow size distribution. The thickness of the CaTiO3:Pr3+ shell could be easily controlled by changing the number of deposition cycles (about 70 nm for four deposition cycles). The core-shell SiO2-CaTiO3:Pr3+ particles show a strong red emission corresponding to D-1(2)-H-3(4) (612 nm) of Pr3+ under the excitation of ultraviolet (326 nm) and low voltage electron beams (1-5 kV). These particles may be used in field emission displays.