955 resultados para Luminescence Resonance Energy Transfer
Resumo:
The deactivation of the two lowest excited states of Ho3+ was investigated in Ho3+ singly doped and Ho3+, Pr3+-codoped fluoride (ZBLAN) glasses. We establish that 0.1-0.3 mol % Pr3+ can efficiently deactivate the first excited (I-5(7)) state of Ho3+ while causing a small reduction of similar to 40% of the initial population of the second excited (I-5(6)) state. The net effect introduced by the Pr3+ ion deactivation of the Ho3+ ion is the fast recovery of the ground state of Ho3+. The Burshstein model parameters relevant to the Ho3+-> Pr3+ energy transfer processes were determined using a least squares fit to the measured luminescence decay. The energy transfer upconversion and cross relaxation parameters for 1948, 1151, and 532 nm excitations of singly Ho3+-doped ZBLAN were determined. Using the energy transfer rate parameters we determine from the measured luminescence, a rate equation model for 650 nm excitation of Ho3+-doped and Ho3+, Pr3+-doped ZBLAN glasses was developed. The rate equations were solved numerically and the population inversion between the I-5(6) and the I-5(7) excited states of Ho3+ was calculated to examine the beneficial effects on the gain associated with Pr3+ codoping. (c) 2007 American Institute of Physics.
Resumo:
Sodium phosphoniobate glasses with the composition (mol%) 75NaPO(3)-25Nb(2)O(5) and containing 2 mol% Yb3+ and x mol% Er3+ (0.01 <= x <= 2) were prepared using the conventional melting/casting process. Er3+ emission at 1.5 mu m and infrared-to-visible upconversion emission, upon excitation at 976 nm, are evaluated as a function of the Er3+ concentration. For the lowest Er3+ content, 1.5 mu m emission quantum efficiency was 90%. Increasing the Er3+ concentration up to 2 mol%, the emission quantum efficiency was observed to decrease to 37% due to concentration quenching. The green and red upconversion emission intensity ratio was studied as a function of Yb3+ co-doping and the Er3+-Er3+ energy transfer processes. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Luminescence data for Eu3+ and Gd3+ in fluoroindate glasses are compared to those of a fluorozirconate glass. Emission is observed from Eu3+ 5D(J) (J = 0, 1, 2 and 3) and Gd3+ P-6(7/2) excited-state levels and the results put in evidence Eu-Eu and Gd-Eu energy transfer processes. Vibronic bands related to a 320 cm-1 vibrational mode could be observed for Eu3+ luminescent transitions with DELTAJ = 0, 1 and 2 and also for the P-6(7/2) --> S-8(7/2) transition of Gd3+. Lanthanide ion site symmetry is closer to an inversion center in fluoroindate glasses than it is in fluorozirconate.
Resumo:
Er3+ doped SnO2 xerogels have been obtained from aqueous colloidal suspensions. Emission and excitation spectra were obtained and allowed the identification of two main families of sites for Er3+. In the first one Er3+ substitutes for Sn4+ in the SnO2 cassiterite structure. In the second Er3+ are found adsorbed at the SnO2 particle surface. For the first family of sites the technological important infrared Er3+ emission about 1.5 mum is efficiently excited through absorption at the SnO2 conduction band at 3.8 eV. on the other hand the emission due to adsorbed ions appears inhomogeneously broadened by the statistical distribution of sites available for Er3+ ions at the surface of the particles. Moreover it is not excited by the host. The emission of this second family of sites could be also excited by an energy transfer mechanism involving Yb3+ ions also adsorbed a posteriori at particles surface. Results are compared with spectra obtained for Eu3+ doped samples. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this paper, we report luminescent and morphological studies with yttrium oxide samples doped with ytterbium and erbium. The samples were prepared by the combustion method and also from different precursors: oxalate, basic carbonate and polymeric resin. All powders were identified Lis being an yttrium oxide with a C-form structure, independent of the employed precursor. From mean crystallite size measurements, it was verified that oxides prepared through the polymeric precursor and combustion methods lead to the smallest crystallite size. Particle shape and size were investigated by SEM and TEM, and showed that both the oxalate precursor and the combustion methods do not provide oxide materials of suitable shape or size, on the other hand. The basic carbonate and polymeric precursors resulted in spherically shaped particles with an average diameter of 90 and 15 run. respectively, Upon 980 run diode laser excitation, green and red emission lines were detected for all samples and were assigned to the H-2(11/2) S-4(3/2) -> I-4(15/2) and (4)Fg(9/2) -> 4I(15/12) transitions, respectively. Such transitions are characteristic for Er3+ and result from energy transfer from Yb3+ energy levels, F-2(7/2) -> F-2(5/2). A relationship between the decrease in the mean crystallite size and the enhancement in red emission was also established as well as the influence of the presence of a high percentage of Yb-3 Both factors promote ET from Yb3+ (F-2(5/2)) to Er3+ (I-4(11/2)). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
ZnO:Eu3+ (0.1 and 3 at%) with average particle size of 500 nm were prepared by the Pechini method. Photoluminescence spectroscopy evidences that there is no energy transfer between ZnO and Eu3+ ion. The emission spectrum at 77 K shows that Eu3+ ions occupy at least three different sites in ZnO:Eu 3 at% sample. The experimental intensity parameter Omega(2) indicates that Eu3+ ions in the sample doped with 3 at% occupy sites where 4-configurational levels can better mix with opposite-parity states than those in the sample doped with 0.1 at%. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Langmuir-Blodgett (LB) technique is a powerful tool to fabricate ultrathin films with highly ordered structures and controllable molecular array for efficient energy and electron transfer, allowing the construction of devices at molecular level. One method to obtain LB films consists in the mixture of classical film-forming molecules, for example Stearic Acid (SA) and functional metal complex. In this work NH(4)[Eu(bmdm)(4)], where the organic ligand bmdm is (butyl methoxy-dibenzoyl-methane) or (1-(4-methoxyphenyl)-3-(4-tert-butylphenyl)propane-1,3-dione) was used to build up Langmuir and LB films. Langmuir isotherms were obtained from (i) NH(4)[Eu(bmdm)(4)] complex and (ii) NH(4)[Eu(bmdm)(4)]/SA (1:1). Results indicated that (i) form multilayer structure; however the surface pressure was insufficient to obtain LB films, and (ii) can easily reproduce and build LB films. The dependence of number of layers in the UV absorption spectra suggest that the complex did not hydrolyze or show decomposition, UV spectral differences observed between the solution and the LB film indicate that the complex has a highly ordered arrangement in the film and the complex has an interaction with SA. Excitation spectra confirm a ligand-europium energy transfer mechanism. The transition lines of Eu(3+) ion were observed in emission spectra of all films, the photoluminescence spectra indicate a fluorescence enhanced effect with the number of LB layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Energy transfer excited multiwavelength visible upconversion emission and white light generation is described in a single sample of PbGeO(3)-PbF(2)-CdF(2) glass-ceramic triply doped With Ho/Tm/Yb under single infrared laser excitation. Blue (475 nm), green (540 mn), and red (650 nm), upconversion luminescence signals are generated, and the emissions are assigned, respectively, to thulium ((1)G(4)-(3)H(6)), and holmium ((5)S(2);(5)F(4)) -> (5)I(8), (5)F(5) -> (5)I(8)) ions transitions, both excited via successive energy transfers from ytterbium ions. It is experimentally shown that with a proper combination of the rare earth ions contents, white light may be produced, with the simultaneous generation of fluorescence with controllable intensities at the wavelengths of the three primary colours in a single sample and using a single near-infrared excitation source.
Resumo:
The mechanism involved in the Tm(3+)((3)F(4)) -> Tb(3+)((7)F(0,1,2)) energy transfer as a function of the Tb concentration was investigated in Tm:Tb-doped germanate (GLKZ) glass. The experimental transfer rate was determined from the best fit of the (3)F(4) luminescence decay due to the Tm -> Tb energy transfer using the Burshtein model. The result showed that the 1700 nm emission from (3)F(4) can be completely quenched by 0.8 mol% of Tb(3+). As a consequence, the (7)F(3) state of Tb(3+) interacts with the (3)H(4) upper excited state of TM(3+) slighting decreasing its population. The effective amplification coefficient beta(cm(-1)) that depends on the population density difference Delta n = n((3)H(4))-n((3)F(4)) involved in the optical transition of Tm(3+) (S-band) was calculated by solving the rate equations of the system for continuous pumping with laser at 792 nm, using the Runge-Kutta numerical method including terms of fourth order. The population density inversion An as a function of Tb(3+) concentration was calculated by computational simulation for three pumping intensities, 0.2, 2.2 and 4.4 kWcm(-2). These calculations were performed using the experimental Tm -> Tb transfer rates and the optical constants of the Tm (0.1 mol%) system. It was demonstrated that 0.2 mol% of Tb(3+) propitiates best population density inversion of Tin(3+) maximizing the amplification coefficient of Tm-doped (0.1 mol%) GLKZ glass when operating as laser intensity amplification at 1.47 mu m. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present photoluminescence and decay of photo excited conductivity data for sol-gel SnO(2) thin films doped with rare earth ions Eu(3+) and Er(3+), a material with nanoscopic crystallites. Photoluminescence spectra are obtained under excitation with several monochromatic light sources, such as Kr(+) and Ar(+) lasers, Xe lamp plus a selective monochromator with UV grating, and the fourth harmonic of a Nd: YAG laser (4.65eV), which assures band-to-band transition and energy transfer to the ion located at matrix sites, substitutional to Sn(4+). The luminescence structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at grain boundary layer, where it is placed in asymmetric sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference between capture energy and grain boundary barrier is not so evident, even though the luminescence spectra are rather distinct.
Resumo:
This paper describes two simple thermal methods for measuring the energy fluence in J/cm 2 from a diagnostic x-ray exposure. Both detectors absorb essentially 100% of the radiation and give a signal that is directly proportional to the energy fluence of the x-ray beam. One detector measures the thermal effect when a pulse of x rays is totally absorbed in the pyroelectric detector of lead-zirconium-titanate (PZT). The other detector measures the expansion of a gas surrounding a lead disk detector in a photoacoustic chamber. The increased pressure of the gas is transmitted through a 1-mm duct to a sensitive microphone. Both detectors have previously been used to measure the energy fluence rate of continuous x-ray beams in the same energy region using a chopped beam and a lock-in amplifier. Measurement of the energy fluence of a pulse of radiation eliminates the need for the beam chopper and lock-in amplifier and results in a simple, rugged, and inexpensive dosimeter. Either method can be combined with the area of the beam to give an estimate of the imparted energy to the patient from a diagnostic x-ray exposure.
Resumo:
Fluorindate glasses containing 1,2,3,4 ErF3 mol % were prepared in a dry box under argon atmosphere. Absorption, Stokes luminescence (under visible and infrared excitation), the dependence of 4S3/2, 4I11/2, and 4I13/2 lifetimes with Er concentration, and upconversion under Ti-saphire laser excitation at λ=790 nm were measured, mostly at T=77 and 300 K. The upconversion results in a strong green emission and weaker blue and red emissions whose intensity obeys a power-law behavior I∼Pn, where P is the infrared excitation power and n=1.6, 2.1, and 2.9 for the red, green, and blue emissions, respectively. The red emission exponent n=1.5 can be explained by a cross relaxation process. The green and blue emissions are due to excited state absorption (ESA) and energy transfer (ET) processes that predict a factor n=2 and n=3 for the green and blue emissions, respectively. From transient measurements we concluded that for lightly doped samples the green upconverted emission is originated due to both processes ESA and ET. However, for heavily doped samples ET is the dominant process.
Resumo:
We report the observation of frequency upconversion in fluoroindate glasses with the following compositions: (mol%) (39 - x)InF3-20ZnF2-20SrF2-16BaF 2-2GdF3-2NaF-1GaF3-xNdF3 (x = 0.05, 0.1, 0.5, 1, 2, 3). The excitation source was a dye laser in resonance with the 4I9/2→(2G5/2, 2G7/2) transition of the Nd3+ ions. The upconverted fluorescence spectra show emissions from ∼ 350 to ∼ 450 nm, corresponding to transitions 4D3/2→4I9/2 ;4D3/2→4I11/2; 2P3/2→ 4I9/2; 4D3/2→4I13/2; 2P3/2→4I11/2; 4D3/2→4I15/2; and 2P3/2 → 4I13/2. The dependence of the fluorescence signals on the laser intensity indicates that two laser photons participate in the process. The temporal behavior of the signal indicates that energy transfer among the Nd3+ ions is the main mechanism which contributes to upconversion at 354 and 382 nm.