999 resultados para Lottie May (Ship)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characteristics of the spring and fall phytoplankton blooms in spawning areas on the Scotian Shelf, Canada, were estimated from remote sensing data. These blooms, along with anomalies in the North Atlantic Oscillation, were used to explain variation in the recruitment of 4 populations of cod and haddock. We tested the effects of the timing of the bloom using the chlorophyll a (chl a) signal, the maximum amount of chl a, the timing of the diatom bloom, and the maximum relative dominance of diatoms on the recruitment (to Age 1) of cod and haddock on the Scotian Shelf. Models were run separately for the effects of the spring and fall blooms. Only 3 of 10 models tested (0-lag) explained significant (80 to 92%) variation in recruitment. However, the performance of these models was not consistent across populations or species, suggesting that generalities about how spring and fall phytoplankton blooms affect recruitment cannot yet be made. The differences among models suggest that fish larvae are probably adapted locally to food production and thus indirectly to the characteristics of the phytoplankton bloom, which in turn are influenced by regional (meso-scale) oceanographic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Continuous Plankton Recorder has been sampling the northeast Pacific on a routine basis since 2000. Although this is a relatively short time series still, climate variability within that time has caused noticeable related changes in the plankton. The earlier part of the time series followed the 1999 La Nina and conditions were cool, but conditions between 2003 and 2005 were anomalously warm. Oceanic zooplankton have responded to this warming in several ways that are discernible in CPR data. The seasonal cycle of mesozooplankton biomass in the eastern Gulf of Alaska has shifted earlier in the spring by a few weeks (sampling resolution is too coarse to be more accurate). The copepod Neocalanus plumchruslflemingeri is largely responsible as it makes up a high proportion of the spring surface biomass and stage-based determinations have shown an earlier maximum in warmer years across much of the northeast Pacific, spanning nearly 20 degrees of latitude. Summer copepod populations are more diverse than in spring, although lower in biomass. The northwards extension of southern taxa in the summer correlates with surface temperature and in warmer years southern taxa are found further north than in cooler years. These findings support the importance of monitoring the open ocean particularly as it is an important foraging ground for large fish, birds and mammals. Higher trophic levels may time their reproduction or migration to coincide with the abundance of particular prey which may be of a different composition and/or lower abundance at a particular time in warmer conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From January 2011 to December 2013, we constructed a comprehensive pCO2 data set based on voluntary observing ship (VOS) measurements in the western English Channel (WEC). We subsequently estimated surface pCO2 and air–sea CO2 fluxes in northwestern European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), wind speed (WND), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011–2013 data set (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT and LDEO databases and obtained good agreement between modeled and observed data. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of −0.6 ± 0.3, −0.9 ± 0.3 and −0.5 ± 0.3 mol C m−2 yr−1 in the northern Celtic Sea, southern Celtic sea and nWEC, respectively, whereas permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2 ± 0.2 and 0.3 ± 0.2 mol C m−2 yr−1 in the sWEC and IS, respectively. Air–sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over these provinces for the last decade and obtained the first annual average uptake of −1.11 ± 0.32 Tg C yr−1 for this part of the northwestern European continental shelf. Our study showed that combining VOS data with satellite observations can be a powerful tool to estimate and extrapolate air–sea CO2 fluxes in sparsely sampled area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maritime transport and shipping are impacted negatively by biofouling, which can result in increased fuel consumption. Thus, costs for fouling reduction can be considered an investment to reduce fuel consumption. Anti-fouling measures also reduce the rate of introduction of non-indigenous species (NIS). Further mitigation measures to reduce the transport of NIS within ballast water and sediments impose additional costs. The estimated operational cost of NIS mitigation measures may represent between 1.6% and 4% of the annual operational cost for a ship operating on European seas, with the higher proportional costs in small ships. However, fouling by NIS may affect fuel consumption more than fouling by native species due to differences in species’ life-history traits and their resistance to antifouling coatings and pollution. Therefore, it is possible that the cost of NIS mitigation measures could be smaller than the cost from higher fuel consumption arising from fouling by NIS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new species of lamellibrachiid vestimentiferan, Lamellibrachia anaximandri n. sp., has been found in the Eastern Mediterranean, close to cold seeps of fluid carrying dissolved methane and sources of sulfide in superficial sediments. It occurs at about 1100 to 2100 m depth, on some of the mud volcanoes on the Anaximander Mountains, south of Turkey, on the Mediterranean Ridge, south of Crete, and on the Nile deep-sea fan. In addition, it has been obtained from rotting paper inside a sunken ship, torpedoed in 1915 and lying at 2800 m depth, southeast of Crete. Some frenulate pogonophores also occur on the mud volcanoes (including a species of Siboglinum resembling S. carpinei and tubes of other unidentified genera). The new Lamellibrachia is the first vestimentiferan species to be described from the Mediterranean. It differs from L. luymesi taken from the Gulf of Mexico population in the very weak development of collars on its tube and in having a smaller number of pairs of branchial lamellae in the branchial plume. Sequencing of the COI and the mt16S genes confirms a difference at the species level between the new species and L. luymesi, and a difference between these two species and four described species of Lamellibrachia from the Pacific Ocean. The largest individuals of L. anaximandri n. sp. may be many years old, but there are numerous young individuals at some sites, showing that favourable conditions are available for settlement and early growth. The development of the branchial plume in a series of young stages reveals that the sheath lamellae, which are characteristic of the genus Lamellibrachia, begin to form only after the establishment of several pairs of branchial lamellae. Examination of the adult trophosome by transmission electron microscopy shows Gram-negative bacteria without internal stacked membranes, indicating that the symbionts are most probably sulfide oxidizing.