967 resultados para Lithium aluminate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hal2p is an enzyme that converts pAp (adenosine 3',5' bisphosphate), a product of sulfate assimilation, into 5' AMP and Pi. Overexpression of Hal2p confers lithium resistance in yeast, and its activity is inhibited by submillimolar amounts of Li+in vitro. Here we report that pAp accumulation in HAL2 mutants inhibits the 5'3' exoribonucleases Xrn1p and Rat1p. Li+ treatment of a wild-type yeast strain also inhibits the exonucleases, as a result of pAp accumulation due to inhibition of Hal2p; 5' processing of the 5.8S rRNA and snoRNAs, degradation of pre-rRNA spacer fragments and mRNA turnover are inhibited. Lithium also inhibits the activity of RNase MRP by a mechanism which is not mediated by pAp. A mutation in the RNase MRP RNA confers Li+ hypersensitivity and is synthetically lethal with mutations in either HAL2 or XRN1. We propose that Li+ toxicity in yeast is due to synthetic lethality evoked between Xrn1p and RNase MRP. Similar mechanisms may contribute to the effects of Li+ on development and in human neurobiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ionic liquid (IL) N-methyl-N-butylmorpholinium bis(fluorosulfonyl)imide (C4mmor FSI) is examined from physical and electrochemical perspectives. Pulsed field gradient NMR spectroscopy shows that ion diffusivities are low compared with similar, non-ethereal ILs. Ionicity values indicate that above room temperature, less than 50% of ions contribute to conductivity.

Lithium cycling in symmetrical cells using a C4mmor FSI-based electrolyte is best demonstrated at elevated temperatures. Specific capacities of 130 mAh g−1 are achieved in a Li−LiFePO4 battery at 85 °C. FT-IR spectroscopic investigations of lithium electrodes suggest the presence of alkoxide species in the solid electrolyte interphase (SEI), implying a ring-opening reaction of C4mmor with lithium metal. In contrast, the SEI derived from N-methyl-N-propylpiperidinium FSI lacks the alkoxide signature but shows signs of alkyl unsaturation, and the activation energy for Li+ transport through this SEI is slightly lower than that for the C4mmor-derived SEI. Our detailed findings give insight into the capabilities and limitations of rechargeable lithium metal batteries utilizing a C4mmor FSI electrolyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organic ionic plastic crystal material N,N-dimethyl pyrrolidinium tetrafluoroborate ([C1mpyr][BF4]) has been mixed with LiBF4 from 0 to 8 wt% and shown to exhibit enhanced ionic conductivity, especially in the higher temperature plastic crystal phases (phases II and I). The materials retain their solid state well above 100 °C with the melt not being observed up to 300 °C. Interestingly the conductivity enhancement is highest with the lowest level of LiBF4 addition in phase II, but then the order of enhancement is reversed in phase I. In all cases, a conductivity drop is observed at the II → I phase transition (105 °C) which is associated with increased order in the pure matrix, as previously reported, although the conductivity drop is least for the highest LiBF4 amount (8 wt%). The 8 wt% sample displays different conductivity behaviours compared to the lower LiBF4 concentrations, with a sharp increase above 50 °C, which is apparently not related to the formation of an amorphous phase, based on XRD data up to 120 °C. Symmetric cells, Li/OIPC/Li, were prepared and cycled at 50 °C and showed evidence of significant preconditioning with continued cycling, leading to a lower over-potential and a concomitant decrease in the cell resistivity as measured by EIS. An SEM investigation of the Li/OIPC interfaces before and after cycling suggested significant grain refinement was responsible for the decrease in cell resistance upon cycling, possibly as a result of an increased grain boundary phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polyterthiophene (PTTh)/multi-walled carbon nanotube (CNT) composite was synthesised by in situ chemical polymerisation and used as an active cathode material in lithium cells assembled with an ionic liquid (IL) or conventional liquid electrolyte, LiBF4/EC–DMC–DEC. The IL electrolyte consisted of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) containing LiBF4 and a small amount of vinylene carbonate (VC). The lithium cells were characterised by cyclic voltammetry (CV) and galvanostatic charge/discharge cycling. The specific capacity of the cells with IL and conventional liquid electrolytes after the 1st cycle was 50 and 47 mAh g−1 (based on PTTh weight), respectively at the C/5 rate. The capacity retention after the 100th cycle was 78% and 53%, respectively. The lithium cell assembled with a PTTh/CNT composite cathode and a non-flammable IL electrolyte exhibited a mean discharge voltage of 3.8 V vs Li+/Li and is a promising candidate for high-voltage power sources with enhanced safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study we expand our analysis of using two contrasting organic solvent additives (toluene and THF) in an ionic liquid (IL)/Li NTf 2 electrolyte. Multinuclear Pulsed-Field Gradient (PFG) NMR, spin-lattice (T1) relaxation times and conductivity measurements over a wide temperature range are discussed in terms of transport properties and structuring of the liquid. The conductivity of both additive samples is enhanced the most at low temperatures, with THF slightly more effective than toluene. Both the anion and lithium self-diffusivity are enhanced in the same order by the additives (THF > toluene) while that of the pyrrolidinium cation is marginally enhanced. 1H spin-lattice relaxation times indicate a reasonable degree of structuring and anisotropic motion within all of the samples and both 19F and 7Li highlight the effectiveness of THF at influencing the lithium coordination within these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurocognitive impairment is being increasingly recognized as an important issue in patients with cancer who develop cognitive difficulties either as part of direct or indirect involvement of the nervous system or as a consequence of either chemotherapy-related or radiotherapy-related complications. Brain radiotherapy in particular can lead to significant cognitive defects. Neurocognitive decline adversely affects quality of life, meaningful employment, and even simple daily activities. Neuroprotection may be a viable and realistic goal in preventing neurocognitive sequelae in these patients, especially in the setting of cranial irradiation. Lithium is an agent that has been in use for psychiatric disorders for decades, but recently there has been emerging evidence that it can have a neuroprotective effect.

This review discusses neurocognitive impairment in patients with cancer and the potential for investigating the use of lithium as a neuroprotectant in such patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Despite more that 60 years of clinical experience, the effective use of lithium for the treatment of mood disorder, in particular bipolarity, is in danger of becoming obsolete. In part, this is because of exaggerated fears surrounding lithium toxicity, acute and long-term tolerability and the encumbrance of life-long plasma monitoring. Recent research has once again positioned lithium centre stage and amplified the importance of understanding its science and how this translates to clinical practice.

Objective: The aim of this paper is to provide a sound knowledge base as regards the science and practice of lithium therapy.

Method: A comprehensive literature search using electronic databases was conducted along with a detailed review of articles known to the authors pertaining to the use of lithium. Studies were limited to English publications and those dealing with the management of psychiatric disorders in humans. The literature was synthesized and organized according to relevance to clinical practice and understanding.

Results: Lithium has simple pharmacokinetics that require regular dosing and monitoring. Its mechanisms of action are complex and its effects are multi-faceted, extending beyond mood stability to neuroprotective and anti-suicidal properties. Its use in bipolar disorder is under-appreciated, particularly as it has the best evidence for prophylaxis, qualifying it perhaps as the only true mood stabilizer currently available. In practice, its risks and tolerability are exaggerated and can be readily minimized with knowledge of its clinical profile and judicious application.

Conclusion: Lithium is a safe and effective agent that should, whenever indicated, be used first-line for the treatment of bipolar disorder. A better understanding of its science alongside strategic management of its plasma levels will ensure both wider utility and improved outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural battery composites that concurrently carry load and store electric energy will
transform future vehicles. They can replace inert structural components and simultaneously provide supplementary power for light load applications. Rechargeable lithium polymer battery cells are embedded into carbon fibre/epoxy matrix composite laminates, which are then tested under tension and three-point bending to investigate the mechanical and electrical performances of structural batteries. The experimental results show that the integration of battery cells into composite laminates has negligible impact on the mechanical strengths of the composite structures. Furthermore, the battery cells remain 95% effective at loads up to about 60% of the ultimate flexural failure load and 50% of the ultimate tensile failure load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultralong SnS2 nanobelts with a high production yield up to _98% were synthesized via a gram-scale and template-free solvothermal route. The synthetic mechanism of these intriguing ultralong nanobelts was proposed to be from the synergetic effect of the layered CdI2-type structure of SnS2 and surfacemodification of the capping reagent dodecanethiol. The resulting SnS2 nanobelts showed a high specific capacity of 640 mA h g_1 and stable cycling ability (560 mA h g_1 after 50 cycles), which is much better than a graphite anode.