920 resultados para Least-Squares prediction
Resumo:
There has been a lack of quick, simple and reliable methods for determination of nanoparticle size. An investigation of the size of hydrophobic (CdSe) and hydrophilic (CdSe/ZnS) quantum dots was performed by using the maximum position of the corresponding fluorescence spectrum. It has been found that fluorescence spectroscopy is a simple and reliable methodology to estimate the size of both quantum dot types. For a given solution, the homogeneity of the size of quantum dots is correlated to the relationship between the fluorescence maximum position (FMP) and the quantum dot size. This methodology can be extended to the other fluorescent nanoparticles. The employment of evolving factor analysis and multivariate curve resolution-alternating least squares for decomposition of the series of quantum dots fluorescence spectra recorded by a specific measuring procedure reveals the number of quantum dot fractions having different diameters. The size of the quantum dots in a particular group is defined by the FMP of the corresponding component in the decomposed spectrum. These results show that a combination of the fluorescence and appropriate statistical method for decomposition of the emission spectra of nanoparticles may be a quick and trusted method for the screening of the inhomogeneity of their solution.
Resumo:
Thedirect torque control (DTC) has become an accepted vector control method besidethe current vector control. The DTC was first applied to asynchronous machines,and has later been applied also to synchronous machines. This thesis analyses the application of the DTC to permanent magnet synchronous machines (PMSM). In order to take the full advantage of the DTC, the PMSM has to be properly dimensioned. Therefore the effect of the motor parameters is analysed taking the control principle into account. Based on the analysis, a parameter selection procedure is presented. The analysis and the selection procedure utilize nonlinear optimization methods. The key element of a direct torque controlled drive is the estimation of the stator flux linkage. Different estimation methods - a combination of current and voltage models and improved integration methods - are analysed. The effect of an incorrect measured rotor angle in the current model is analysed andan error detection and compensation method is presented. The dynamic performance of an earlier presented sensorless flux estimation method is made better by improving the dynamic performance of the low-pass filter used and by adapting the correction of the flux linkage to torque changes. A method for the estimation ofthe initial angle of the rotor is presented. The method is based on measuring the inductance of the machine in several directions and fitting the measurements into a model. The model is nonlinear with respect to the rotor angle and therefore a nonlinear least squares optimization method is needed in the procedure. A commonly used current vector control scheme is the minimum current control. In the DTC the stator flux linkage reference is usually kept constant. Achieving the minimum current requires the control of the reference. An on-line method to perform the minimization of the current by controlling the stator flux linkage reference is presented. Also, the control of the reference above the base speed is considered. A new estimation flux linkage is introduced for the estimation of the parameters of the machine model. In order to utilize the flux linkage estimates in off-line parameter estimation, the integration methods are improved. An adaptive correction is used in the same way as in the estimation of the controller stator flux linkage. The presented parameter estimation methods are then used in aself-commissioning scheme. The proposed methods are tested with a laboratory drive, which consists of a commercial inverter hardware with a modified software and several prototype PMSMs.
Resumo:
We present the first density model of Stromboli volcano (Aeolian Islands, Italy) obtained by simultaneously inverting land-based (543) and sea-surface (327) relative gravity data. Modern positioning technology, a 1 x 1 m digital elevation model, and a 15 x 15 m bathymetric model made it possible to obtain a detailed 3-D density model through an iteratively reweighted smoothness-constrained least-squares inversion that explained the land-based gravity data to 0.09 mGal and the sea-surface data to 5 mGal. Our inverse formulation avoids introducing any assumptions about density magnitudes. At 125 m depth from the land surface, the inferred mean density of the island is 2380 kg m(-3), with corresponding 2.5 and 97.5 percentiles of 2200 and 2530 kg m-3. This density range covers the rock densities of new and previously published samples of Paleostromboli I, Vancori, Neostromboli and San Bartolo lava flows. High-density anomalies in the central and southern part of the island can be related to two main degassing faults crossing the island (N41 and NM) that are interpreted as preferential regions of dyke intrusions. In addition, two low-density anomalies are found in the northeastern part and in the summit area of the island. These anomalies seem to be geographically related with past paroxysmal explosive phreato-magmatic events that have played important roles in the evolution of Stromboli Island by forming the Scari caldera and the Neostromboli crater, respectively. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The present study evaluates the performance of four methods for estimating regression coefficients used to make statistical decisions regarding intervention effectiveness in single-case designs. Ordinary least squares estimation is compared to two correction techniques dealing with general trend and one eliminating autocorrelation whenever it is present. Type I error rates and statistical power are studied for experimental conditions defined by the presence or absence of treatment effect (change in level or in slope), general trend, and serial dependence. The results show that empirical Type I error rates do not approximate the nominal ones in presence of autocorrelation or general trend when ordinary and generalized least squares are applied. The techniques controlling trend show lower false alarm rates, but prove to be insufficiently sensitive to existing treatment effects. Consequently, the use of the statistical significance of the regression coefficients for detecting treatment effects is not recommended for short data series.
Resumo:
Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.
Resumo:
This paper examines the role of assortative mating in the intergenerational economic mobility in Spain. Sons and daughters usually marry individuals with similar characteristics, which may lower mobility. Our empirical strategy employs the Two-sample two-stage least squares estimator to estimate the intergenerational income elasticity in absence of data for two generations not residing in the same household. Our findings suggest that assortative mating plays an important role in the intergenerational transmission process. On average about 50 per 100 of the covariance between parents’ income and child family’s incomecan be accounted for by the person the child is married to
Resumo:
This article analyses the impact that innovation expenditure and intrasectoral and intersectoral externalities have on productivity in Spanish firms. While there is an extensive literature analysing the relationship between innovation and productivity, in this particular area there are far fewer studies that examine the importance of sectoral externalities, especially with the focus on Spain. One novelty of the study, which covers the industrial and service sectors, is that we also consider jointly the technology level of the sector in which the firm operates and the firm size. The database used is the Technological Innovation Panel, PITEC, which includes 12,813 firms for the year 2008 and has been little used in this type of study. The estimation method used is Iteratively Reweighted Least Squares method, IRLS, which is very useful for obtaining robust estimations in the presence of outliers. The results confirm that innovation has a positive effect on productivity, especially in high-tech and large firms. The impact of externalities is more heterogeneous because, while intrasectoral externalities have a poitive and significant effect, especially in low-tech firms independently of size, intersectoral externalities have a more ambiguous effect, being clearly significant for advanced industries in which size has a positive effect.
Resumo:
The determination of zirconium-hafnium mixtures is one of the most critical problem of the analytical chemistry, on account of the close similarity of their chemical properties. The spectrophotometric determination proposed by Yagodin et al. show not many practical applications due to the significant spectral interference on the 200-220 nm region. In this work we propound the use of a multivariate calibration method called partial least squares ( PLS ) for colorimetric determination of these mixtures. By using PLS and 16 calibration mixtures we obtained a model which permits determination of zirconium and hafnium with accuracy of about 1-2% and 10-20%, respectively. Using conventional univariate calibration the inaccuracy of the determination is about 10-25% for zirconium and above 57% for hafnium.
Resumo:
Genetic algorithm was used for variable selection in simultaneous determination of mixtures of glucose, maltose and fructose by mid infrared spectroscopy. Different models, using partial least squares (PLS) and multiple linear regression (MLR) with and without data pre-processing, were used. Based on the results obtained, it was verified that a simpler model (multiple linear regression with variable selection by genetic algorithm) produces results comparable to more complex methods (partial least squares). The relative errors obtained for the best model was around 3% for the sugar determination, which is acceptable for this kind of determination.
Resumo:
The objective of this work was to accomplish the simultaneous determination of some chemical elements by Energy Dispersive X-ray Fluorescence (EDXRF) Spectroscopy through multivariate calibration in several sample types. The multivariate calibration models were: Back Propagation neural network, Levemberg-Marquardt neural network and Radial Basis Function neural network, fuzzy modeling and Partial Least Squares Regression. The samples were soil standards, plant standards, and mixtures of lead and sulfur salts diluted in silica. The smallest Root Mean Square errors (RMS) were obtained with Back Propagation neural networks, which solved main EDXRF problems in a better way.
Estudo QSPR sobre os coeficientes de partição: descritores mecânico-quânticos e análise multivariada
Resumo:
Quantum chemistry and multivariate analysis were used to estimate the partition coefficients between n-octanol and water for a serie of 188 compounds, with the values of the q 2 until 0.86 for crossvalidation test. The quantum-mechanical descriptors are obtained with ab initio calculation, using the solvation effects of the Polarizable Continuum Method. Two different Hartree-Fock bases were used, and two different ways for simulating solvent cavity formation. The results for each of the cases were analised, and each methodology proposed is indicated for particular case.
Resumo:
In this work, a partial least squares regression routine was used to develop a multivariate calibration model to predict the chemical oxygen demand (COD) in substrates of environmental relevance (paper effluents and landfill leachates) from UV-Vis spectral data. The calibration models permit the fast determination of the COD with typical relative errors lower by 10% with respect to the conventional methodology.
Resumo:
Least-squares support vector machines (LS-SVM) were used as an alternative multivariate calibration method for the simultaneous quantification of some common adulterants found in powdered milk samples, using near-infrared spectroscopy. Excellent models were built using LS-SVM for determining R², RMSECV and RMSEP values. LS-SVMs show superior performance for quantifying starch, whey and sucrose in powdered milk samples in relation to PLSR. This study shows that it is possible to determine precisely the amount of one and two common adulterants simultaneously in powdered milk samples using LS-SVM and NIR spectra.
Resumo:
EPR users often face the problem of extracting information from frequently low-resolution and complex EPR spectra. Simulation programs that provide a series of parameters, characteristic of the investigated system, have been used to achieve this goal. This work describes the general aspects of one of those programs, the NLSL program, used to fit EPR spectra applying a nonlinear least squares method. Several motion regimes of the probes are included in this computational tool, covering a broad range of spectral changes. The meanings of the different parameters and rotational diffusion models are discussed. The anisotropic case is also treated by including an orienting potential and order parameters. Some examples are presented in order to show its applicability in different systems.
Resumo:
In this work, the artificial neural networks (ANN) and partial least squares (PLS) regression were applied to UV spectral data for quantitative determination of thiamin hydrochloride (VB1), riboflavin phosphate (VB2), pyridoxine hydrochloride (VB6) and nicotinamide (VPP) in pharmaceutical samples. For calibration purposes, commercial samples in 0.2 mol L-1 acetate buffer (pH 4.0) were employed as standards. The concentration ranges used in the calibration step were: 0.1 - 7.5 mg L-1 for VB1, 0.1 - 3.0 mg L-1 for VB2, 0.1 - 3.0 mg L-1 for VB6 and 0.4 - 30.0 mg L-1 for VPP. From the results it is possible to verify that both methods can be successfully applied for these determinations. The similar error values were obtained by using neural network or PLS methods. The proposed methodology is simple, rapid and can be easily used in quality control laboratories.