984 resultados para Learning Math
Resumo:
Professional coaching is a rapidly expanding field with interdisciplinary roots and broad application. However, despite abundant prescriptive literature, research into the process of coaching, and especially life coaching, is minimal. Similarly, although learning is inherently recognised in the process of coaching, and coaching is increasingly being recognised as a means of enhancing teaching and learning, the process of learning in coaching is little understood, and learning theory makes up only a small part of the evidence-based coaching literature. In this grounded theory study of life coaches and their clients, the process of learning in life coaching across a range of coaching models is examined and explained. The findings demonstrate how learning in life coaching emerged as a process of discovering, applying and integrating self-knowledge, which culminated in the development of self. This process occurred through eight key coaching processes shared between coaches and clients and combined a multitude of learning theory.
Resumo:
The topic of the present work is to study the relationship between the power of the learning algorithms on the one hand, and the expressive power of the logical language which is used to represent the problems to be learned on the other hand. The central question is whether enriching the language results in more learning power. In order to make the question relevant and nontrivial, it is required that both texts (sequences of data) and hypotheses (guesses) be translatable from the “rich” language into the “poor” one. The issue is considered for several logical languages suitable to describe structures whose domain is the set of natural numbers. It is shown that enriching the language does not give any advantage for those languages which define a monadic second-order language being decidable in the following sense: there is a fixed interpretation in the structure of natural numbers such that the set of sentences of this extended language true in that structure is decidable. But enriching the original language even by only one constant gives an advantage if this language contains a binary function symbol (which will be interpreted as addition). Furthermore, it is shown that behaviourally correct learning has exactly the same power as learning in the limit for those languages which define a monadic second-order language with the property given above, but has more power in case of languages containing a binary function symbol. Adding the natural requirement that the set of all structures to be learned is recursively enumerable, it is shown that it pays o6 to enrich the language of arithmetics for both finite learning and learning in the limit, but it does not pay off to enrich the language for behaviourally correct learning.
Resumo:
The present paper motivates the study of mind change complexity for learning minimal models of length-bounded logic programs. It establishes ordinal mind change complexity bounds for learnability of these classes both from positive facts and from positive and negative facts. Building on Angluin’s notion of finite thickness and Wright’s work on finite elasticity, Shinohara defined the property of bounded finite thickness to give a sufficient condition for learnability of indexed families of computable languages from positive data. This paper shows that an effective version of Shinohara’s notion of bounded finite thickness gives sufficient conditions for learnability with ordinal mind change bound, both in the context of learnability from positive data and for learnability from complete (both positive and negative) data. Let Omega be a notation for the first limit ordinal. Then, it is shown that if a language defining framework yields a uniformly decidable family of languages and has effective bounded finite thickness, then for each natural number m >0, the class of languages defined by formal systems of length <= m: • is identifiable in the limit from positive data with a mind change bound of Omega (power)m; • is identifiable in the limit from both positive and negative data with an ordinal mind change bound of Omega × m. The above sufficient conditions are employed to give an ordinal mind change bound for learnability of minimal models of various classes of length-bounded Prolog programs, including Shapiro’s linear programs, Arimura and Shinohara’s depth-bounded linearly covering programs, and Krishna Rao’s depth-bounded linearly moded programs. It is also noted that the bound for learning from positive data is tight for the example classes considered.
Resumo:
The present paper focuses on some interesting classes of process-control games, where winning essentially means successfully controlling the process. A master for one of these games is an agent who plays a winning strategy. In this paper we investigate situations in which even a complete model (given by a program) of a particular game does not provide enough information to synthesize—even incrementally—a winning strategy. However, if in addition to getting a program, a machine may also watch masters play winning strategies, then the machine is able to incrementally learn a winning strategy for the given game. Studied are successful learning from arbitrary masters and from pedagogically useful selected masters. It is shown that selected masters are strictly more helpful for learning than are arbitrary masters. Both for learning from arbitrary masters and for learning from selected masters, though, there are cases where one can learn programs for winning strategies from masters but not if one is required to learn a program for the master's strategy itself. Both for learning from arbitrary masters and for learning from selected masters, one can learn strictly more by watching m+1 masters than one can learn by watching only m. Last, a simulation result is presented where the presence of a selected master reduces the complexity from infinitely many semantic mind changes to finitely many syntactic ones.
Resumo:
AfL practices observed in case studies in a North Queensland school were analysed from a sociocultural theoretical perspective. AfL practices of feedback, dialogue and peer assessment were viewed as an opportunity for students to learn the social expectations about being an autonomous learner, or central participant within the classroom community of practice. This process of becoming more expert and belonging within the community of practice involved students negotiating identities of participation that included knowing both academic skills and social expectations within the classroom. This paper argues that when AfL practices are viewed as ways of enhancing participation, there is potential for learners to negotiate identities as autonomous learners. AfL practices within the daily classroom interactions and pedagogy that enabled students to develop a shared repertoire, joint enterprise and mutual engagement in the classroom communities of practice are described. The challenges for teachers in shifting their gaze to patterns of participation are also briefly discussed.