977 resultados para Layered double hydroxides
Resumo:
This paper examines the effect of substitution of water by heavy water in a polymer solution of polystyrene (molecular weight = 13000) and acetone. A critical double point (CDP), at which the upper and the lower partially-miscible regions merge, occurs at nearly the same coordinates as for the system [polystyrene + acetone + water]. The shape of the critical line for [polystyrene + acetone + heavy water] is highly asymmetric. An explanation for the occurrence of the water-induced CDP in [polystyrene + acetone] is advanced in terms of the interplay between contact energy dissimilarity and free-volume disparity of the polymer and the solvent. The question of the possible existence of a one-phase hole in an hourglass phase diagram is addressed in [polystyrene + acetone + water]. Our data exclude such a possibility.
Resumo:
A detailed study of the layered manganite La1+xSr2-xMn2O7 has been performed, establishing that within the composition range 0.1 less than or equal to x less than or equal to 0.45 the phases crystallize in the I4/mmm space group. The evolution of structural parameters with x: in this composition range has been followed using a novel application of an existing program for the Rietveld analysis of powder diffraction data. The structure, a familiar intergrowth of rock-salt (La,Sr)O slabs and double perovskite (La,Sr)(2)Mn2O6 units, is characterized by a reluctance to deform the latter. This manifests as a ''pumping'' of the larger Sr-II ion into the 12-coordinate site of the structure as x is increased. We report these features of the structure as well as electrical transport and magnetic properties, in light of recent observations of giant, negative magnetoresistance in these systems.
Resumo:
We describe the synthesis and structural characterization of new layered bismuth titanates, A[Bi3Ti4O13] and A[Bi3PbTi5O16]for A = K, Cs, corresponding to n = 4 and 5 members of the Dion-Jacobson series of layered perovskites of the general formula, A[A'n-1BnO3n+1]. These materials have been prepared by solid state reaction of the constituents containing excess alkali, which is required to suppress the formation of competitive Aurivillius phases. Unlike the isostructural niobates and niobium titanates of the same series, the new phases reported here are spontaneously hydrated-a feature which could make them potentially useful as photocatalysts for water splitting reaction. On hydration of the potassium compounds, the c axis expands by ca. 2 Angstrom and loses its doubling [for example, the tetragonal lattice parameters of K[Bi3Ti4O13] and its dihydrate are respectively a = 3900(1)Angstrom c 37.57(2) Angstrom; a 3.885(1) Angstrom, c = 20.82(4) Angstrom]; surprisingly, the cesium analogues do not show a similar change on hydration.
Resumo:
The anisotropic magnetic susceptibilities of single crystals of the isostructural layered antiferromagnets, MnPS3 (T-N = 78 K) and MnPSe3 (T-N = 74 K), have been measured as functions of temperature. In both compounds, divalent manganese is present in the high-spin S = 5/2 state. The anisotropies in the susceptibilities of the two are, however, very different; while the susceptibility of MnPS3 is isotropic, that of MnPSe3 shows a large XY anisotropy, unusual for a manganese compound. The anisotropic susceptibilities are described by the zero-field spin Hamiltonian: H = DSiz2 - Sigma J(ij).(S) over right arrow (S) over right arrow(j) with the quadratic single-ion anisotropy term introducing anisotropy in an otherwise isotropic situation. The exchange J and the single-ion zero-field-splitting (ZFS) parameter D were evaluated using the correlated effective-field theory of Lines. For MnPSe3, J/k = -5.29 K and D/k = 26.6 K, while for isotropic MnPS3, J/k = -8.1 K. It is suggested that the large value of the ZFS parameter for MnPSe3 as compared to MnPS3 could be due to the large ligand spin-orbit contribution of the heavier selenium.
Resumo:
A new iron fluorophosphate of the composition, [C6N4H21] [Fe2F2(HPO4)(3)][H2PO4](.)2H(2)O, I has been prepared by the hydrothermal route. This compound contains iron fluorophosphate layers and the H2PO4- anions are present in the interlayer space along with the protonated amine and water molecules. The compound crystallizes in the monoclinic space group P2(1)/c. (a = 13-4422(10) Angstrom, b = 9 7320(10) Angstrom, c = 18-3123(3) Angstrom, beta = 92-1480degrees, V = 2393-92(5) Angstrom 3, Z = 4, M = 719-92, d(calc). = 1.997 g cm(-3), R-1 = 0.03 and wR(2) = 0,09).
Resumo:
Microstrip patch antennas are strong candidates for use in many wireless communications applications. This paper proposes the use of a patch antenna with two U-shaped slots to achieve dual band operation. A thick substrate helps broaden the individual bandwidths. The antenna is designed based on extensive IE3D simulation studies. A prototype antenna is fabricated and experimentally verified for the required performance.
Resumo:
Layered organic inorganic hybrids based on perovskite-derived alkylammonium lead halides have been demonstrated as important new materials in the construction of molecular electronic devices. Typical of this class of materials are the single-perovskite slab lead iodides of the general formula (CnH2n+1NH3)(2)PbI4. While for small n, these compounds are amenable to single-crystal structure determination, the increasing degree of disorder in the long chain (n = 12,14...) compounds makes such an analysis difficult. In this study, we use powder X-ray diffraction, and vibrational and C-13 NMR spectroscopies to establish the conformation, orientation and organization of hydrocarbon chains in the series of layered alkylammonium lead iodides (CnH2n+1NH3)(2)PbI4 (n = 12,16,18). We find that the alkyl chains adopt a tilted bilayer arrangement, while the structure of the inorganic layer remains invariant with respect to the value of n. Conformation-sensitive methylene stretching modes in the infrared and Raman spectra, as well as the C-13 NMR spectra indicate that bonds in the methylene chain are in trans configuration. The skeletal modes of the alkyl chain in the Raman spectra establish that there is a high degree of all-trans conformational registry for the values of n studied here. From the orientation dependence of the infrared spectra of crystals of (CnH2n+1NH3)(2)PbI4 ( n = 12,16), we find that the molecular axis of the all-trans alkyl chains are tilted away from the interlayer normal by an angle of 55degrees. This value of this tilt angle is consistent with the dependence of the c lattice expansion as a function of n, as determined from powder X-ray diffraction.
Resumo:
By reacting cadmium salts with H2SO4 in the presence of organic amines or directly with amine sulfates under hydrothermal conditions, it has been possible to prepare three linear cadmium sulfates of linarite topology, with the compositions [H3N(CH2)(2)NH3](2)[CdCl2(SO4)][SO4].H2O, I, [HN(CH2)(6)NH][CdBr2(SO4)], II, [HN(CH2)(6)NH][CdCl2-(SO4)], III. A layered cadmium sulfate of composition [H3N(CH2)(3)NH3][Cd-2(H2O)(2)(SO4)(3)], IV, has also been obtained. These sulfates are the first examples of a family of organically templated metal sulfates with interesting structural features. In the linarite chains, the CdX4O2 (X = Cl, Br) octahedron shares two trans-edges to form an [Mphi(4)] (phi = anionic ligand) chain decorated by the SO4 tetrahedron that adopts a staggered arrangement on either side of the chain. IV is constructed by the fusion of four-membered ring ladders involving edge sharing between the sulfate tetrahedron and metal octahedron. IV appears to be the first member of a family of organically templated metal sulfates containing an octahedral-tetrahedral 2D net wherein the sulfate tetrahedron is connected at all four corners.
Resumo:
Neutron powder diffraction measurements on Ca2FeReO6 reveal that this double perovskite orders ferrimagnetically and shows anomalous lattice parameter behavior below T-C=521 K. Below similar to300 K and similar to160 K we observe that the high-T monoclinic crystal structure separates into two and three monoclinic phases, respectively. A magnetic field suppresses the additional phases at low T in favor of the highest-T phase. These manifestations of the orbital degree of freedom of Re 5d electrons indicate that these electrons are strongly correlated and the title compound is a Mott insulator, with competing spin-orbitally ordered states.
Resumo:
Reaction between CdCl2.H2O and NaH2PO4.H2O Under hydrothermal conditions gives rise to a new cadmium chlorophosphate of the formula Na-3[Cd4Cl3(HPO4)(2)(H2PO4)(4)] I. This material crystallizes in the orthorhombic system with space group Fmm2(no. 42). I has macroanionic layers of [Cd4Cl3(HPO4)(2)(H2PO4)(4)](3-) with Na+ ions in the interlamellar space. The discovery of such compounds suggests that metathetic reactions carried out under hydrothermal conditions may provide a novel route for the synthesis of new open-framework structures.
Resumo:
An open-framework zinc phosphate, [C6N4H22][Zn6(PO4)4(HPO4)2] (I), with alternating inorganic and organic layers has been synthesized hydrothermally from a starting mixture of ZnO, HCl, H3PO4, H2C2O4, and triethylenetetramine. Single-crystal data for I: monoclinic, space GROUP =P21/c (No. 14), a=9.881(1), b=16.857(1), c=8.286(1) Å, β=96.7(1)°, V=1370.8(1) Å3, Z=2, R1=0.06, and wR2=0.13 [1408 observed reflections with I>2σ(I)]. The structure of I comprises a network of ZnO4, PO4, and PO3(OH) tetrahedra forming one-dimensional tubes. The tubes, in turn, are linked via oxygen atoms forming macroanionic inorganic layers with eight-membered apertures. The one-dimensional tube-like architecture in I is a novel feature worthy of note.
Resumo:
Transformations of the layered zinc phosphates of the compositions [C6N4H22](0.5) [Zn-2 (HPO4)(3)], I, [C3N2H12][Zn-2 (HPO4)(3)], II and [C3N2OH12][Zn-2 (HPO4)(3)], III, containing triethylenetetramine, 1,3-diaminopropane, and 1,3-diamino-2-hydroxypropane, respectively, have been investigated under different conditions. On heating in water, I transforms to a one-dimensional (1-D) ladder and a three-dimensional (3-D) structure, while II gives rise to only a two-dimensional (2-D) layered structure. In the transformation reaction of I with zinc acetate, the same ladder and 3-D structures are obtained along with a tubular layer. Under similar conditions II gives a layered structure formed by the joining of two ladder motifs. III, on the other hand, is essentially unreactive when heated with water and zinc acetate, probably because the presence of the hydroxy group in the amine which hydrogen bonds to the framework. In the presence of piperazine, I, II and III give rise to a four-membered, corner-shared linear chain which is likely to be formed via the ladder structure. In addition, 2-D and 3-D structures derived from the 1-D linear chain or ladder structures are also formed. The primary result from the study is that the layers produce 1-D ladders, which then undergo other transformations. It is noteworthy that in the various transformations carried out, most of the products are single-crystalline.
Resumo:
We develop a model of the solar dynamo in which, on the one hand, we follow the Babcock-Leighton approach to include surface processes, such as the production of poloidal field from the decay of active regions, and, on the other hand, we attempt to develop a mean field theory that can be studied in quantitative detail. One of the main challenges in developing such models is to treat the buoyant rise of the toroidal field and the production of poloidal field from it near the surface. A previous paper by Choudhuri, Schüssler, & Dikpati in 1995 did not incorporate buoyancy. We extend this model by two contrasting methods. In one method, we incorporate the generation of the poloidal field near the solar surface by Durney's procedure of double-ring eruption. In the second method, the poloidal field generation is treated by a positive α-effect concentrated near the solar surface coupled with an algorithm for handling buoyancy. The two methods are found to give qualitatively similar results.
Resumo:
Results of a study of dc magnetization M(T,H), performed on a Nd(0.6)Pb(0.4)MnO(3) single crystal in the temperature range around T(C) (Curie temperature) which embraces the supposed critical region \epsilon\=\T-T(C)\/T(C)less than or equal to0.05 are reported. The magnetic data analyzed in the critical region using the Kouvel-Fisher method give the values for the T(C)=156.47+/-0.06 K and the critical exponents beta=0.374+/-0.006 (from the temperature dependence of magnetization) and gamma=1.329+/-0.003 (from the temperature dependence of initial susceptibility). The critical isotherm M(T(C),H) gives delta=4.54+/-0.10. Thus the scaling law gamma+beta=deltabeta is fulfilled. The critical exponents obey the single scaling equation of state M(H,epsilon)=epsilon(beta)f(+/-)(H/epsilon(beta+gamma)), where f(+) for T>T(C) and f(-) for T