852 resultados para Latex membrane
Resumo:
Chronic atrial fibrillation affects millions of people worldwide. Its surgical treatment often fails to restore the transport function of the atrium. This study first introduces the concept of an atrial assist device (AAD) to restore the pump function of the atrium. The AAD is developed to be totally implantable in the human body with a transcutaneous energy transfer system to recharge the implanted battery. The ADD consists of a motorless pump based on artificial muscle technology, positioned on the external surface of the atrium to compress it and restore its muscular activity. A bench model reproduces the function of a fibrillating atrium to assess the circulatory support that this pump can provide. Atripump (Nanopowers SA, Switzerland) is a dome-shaped silicone-coated nitinol actuator 5 mm high, sutured on the external surface of the atrium. A pacemaker-like control unit drives the actuator that compresses the atrium, providing the mechanical support to the blood circulation. Electrical characteristics: the system is composed of one actuator that needs a minimal tension of 15 V and has a maximum current of 1.5 A with a 50% duty cycle. The implantable rechargeable battery is made of a cell having the following specifications: nominal tension of a cell: 4.1 V, tension after 90% of discharge: 3.5 V, nominal capacity of a cell: 163 mA h. The bench model consists of an open circuit made of latex bladder 60 mm in diameter filled with water. The bladder is connected to a vertically positioned tube that is filled to different levels, reproducing changes in cardiac preload. The Atripump is placed on the outer surface of the bladder. Pressure, volume and temperature changes were recorded. The contraction rate was 1 Hz with a power supply of 12 V, 400 mA for 200 ms. Preload ranged from 15 to 21 cm H(2)O. Maximal silicone membrane temperature was 55 degrees C and maximal temperature of the liquid environment was 35 degrees C. The pump produced a maximal work of 16 x 10(-3) J. Maximal volume pumped was 492 ml min(-1). This artificial muscle pump is compact, follows the Starling law and reproduces the hemodynamic performances of a normal atrium. It could represent a new tool to restore the atrial kick in persistent atrial fibrillation.
Resumo:
BACKGROUND: Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is an integral membrane protein that has only poorly been characterized to date. In particular, a precise membrane topology is thus far elusive. Here, we explored a novel strategy to map the membrane topology of HCV NS4B. METHODS: Selective permeabilization of the plasma membrane, maleimide-polyethyleneglycol (mPEG) labeling of natural or engineered cysteine residues and immunoblot analyses were combined to map the membrane topology of NS4B. Cysteine substitutions were introduced at carefully selected positions within NS4B and their impact on HCV RNA replication and infectious virus production analyzed in cell culture. RESULTS: We established a panel of viable HCV mutants with cysteine substitutions at strategic positions within NS4B. These mutants are infectious and replicate to high levels in cell culture. In parallel, we adapted and optimized the selective permeabilization and mPEG labeling techniques to Huh-7 human hepatocellular carcinoma cells which can support HCV infection and replication. CONCLUSIONS: The newly established experimental tools and techniques should allow us to refine the membrane topology of HCV NS4B in a physiological context. The expected results should enhance our understanding of the functional architecture of the HCV replication complex and may provide new opportunities for antiviral intervention in the future.
Resumo:
In this paper, we present a computer simulation study of the ion binding process at an ionizable surface using a semi-grand canonical Monte Carlo method that models the surface as a discrete distribution of charged and neutral functional groups in equilibrium with explicit ions modelled in the context of the primitive model. The parameters of the simulation model were tuned and checked by comparison with experimental titrations of carboxylated latex particles in the presence of different ionic strengths of monovalent ions. The titration of these particles was analysed by calculating the degree of dissociation of the latex functional groups vs. pH curves at different background salt concentrations. As the charge of the titrated surface changes during the simulation, a procedure to keep the electroneutrality of the system is required. Here, two approaches are used with the choice depending on the ion selected to maintain electroneutrality: counterion or coion procedures. We compare and discuss the difference between the procedures. The simulations also provided a microscopic description of the electrostatic double layer (EDL) structure as a function of p H and ionic strength. The results allow us to quantify the effect of the size of the background salt ions and of the surface functional groups on the degree of dissociation. The non-homogeneous structure of the EDL was revealed by plotting the counterion density profiles around charged and neutral surface functional groups.
Resumo:
Membrane-active antimicrobial peptides, such as polymyxin B (PxB), are currently in the spotlight as potential candidates toovercome bacterial resistance. We have designed synthetic analogs ofPxB in order to determine the structural requirements for membraneaction. Since the mechanism of action of PxB involves interaction withboth the outer membrane and the cytoplasmic membrane of Gramnegative bacteria, we have used an approach based on mimicking theouter layers of these membranes using monolayers, Langmuir-Blodgettfilms and unilamelar vesicles, and applying a battery of biophysicalmethods in order to dissect the different events of membraneinteraction. Collectively, results indicate that the PxB analogues act inthe bacterial membrane by the same mechanism than PxB, and that cationic amphipathicity determines peptide activity.
Resumo:
Remorins (REMs) are proteins of unknown function specific to vascular plants. We have used imaging and biochemical approaches and in situ labeling to demonstrate that REM clusters at plasmodesmata and in approximately 70-nm membrane domains, similar to lipid rafts, in the cytosolic leaflet of the plasma membrane. From a manipulation of REM levels in transgenic tomato (Solanum lycopersicum) plants, we show that Potato virus X (PVX) movement is inversely related to REM accumulation. We show that REM can interact physically with the movement protein TRIPLE GENE BLOCK PROTEIN1 from PVX. Based on the localization of REM and its impact on virus macromolecular trafficking, we discuss the potential for lipid rafts to act as functional components in plasmodesmata and the plasma membrane.
Resumo:
G-protein-signaling pathways convey extracellular signals inside the cells and regulate distinct physiological responses. This type of signaling pathways consists of three major components: G-protein-coupled receptors (GPCRs), heterotrimeric G proteins (G-proteins) and downstream effectors. Upon ligand binding, GPCRs activate heterotrimeric G proteins to initiate the signaling cascade. Dysfunction of GPCR signaling correlates with numerous diseases such as diabetes, nervous and immune system deficiency, and cancer. As the signaling switcher, G-proteins (Gs, Gq/11, G12/13, and Gi/o) have been an appealing topic of research for decades. A heterotrimeric G-protein is composed of three subunits, the guanine nucleotide associated a-subunit, ß and y subunits. In general, the duration of signaling is determined by the lifetime of activated (GTP bound) Ga subunits. Identification of novel communication partners of Ga subunits appears to be an attractive way to understand the machinery of GPCR signaling. In our lab, we mainly focus on Gao, which is abundantly expressed in the nervous system. Here we present two novel interacting partners of Drosophila Gao: Dhit and Kermit, identified through yeast two-hybrid screening and genetic screening respectively. Dhit is characterized by a small size with a conserved RGS domain and an N-terminal cysteine rich motif. The RGS domain possesses the GAP (GTPase activating protein) activity towards G proteins. However, we found that Dhit exerts not only the GAP activity but also the GDI (guanine nucleotide dissociation inhibitor) activity towards Gao. The unexpected GDI activity is preserved in GAIP/RGS19 - a mammalian homologue of Dhit. Further experiments confirmed the GDI activity of Dhit and GAIP/RGS19 in Drosophila and mammalian cell models. Therefore, we propose that Dhit and its mammalian homologues modulate GPCR signaling by a double suppression of Ga subunits - suppression of their nucleotide exchange with GTP and acceleration of their hydrolysis of GTP. Kermit/GEPC was first identified as a binding partner of GAIP/RGS19 in a yeast two- hybrid screen. Instead of interacting with the Drosophila homologue of GAIP/RGS19 (Dhit), Kermit binds to Gao in vivo and in vitro. The functional consequence of Kermit/Gao interaction is the regulation of localization of Vang (one of the planar cell polarity core components) at the apical membrane. Overall, my work elaborated the action of Gao with its two interaction partners in Gao- mediated signaling pathway. Conceivably, the understanding of GPCR signaling including Gao and its regulators or effectors will ultimately shed light on future pharmaceutical research. - Les voies de signalisation médiées par les protéines G transmettent des signaux extracellulaires à l'intérieur des cellules pour réguler des réponses physiologiques distinctes. Cette voie de signalisation consiste en trois composants majeurs : les récepteurs couplés aux protéines G (GPCRs), les protéines G hétérotrimériques (G-proteins) et les effecteurs en aval. Suite à la liaison du ligand, les GPCRs activent les protéines G hétérotrimériques qui initient la cascade de signalisation. Des dysfonctions dans la signalisation médiée par les GPCRs sont corrélées avec de nombreuses maladies comme le diabète, des déficiences immunes et nerveuses, ainsi que le cancer. Puisque la voie de signalisation s'active et se désactive, les protéines G (Gs, Gq/11, G12/13 et Gi/o) ont été un sujet de recherche attrayant pendant des décennies. Une protéine G hétérotrimérique est composée de trois sous-unités, la sous-unité a associée au nucléotide guanine, ainsi que les sous-unités ß et y. En général, la durée du signal est déterminée par le temps de demi-vie des sous-unités Ga activées (Ga liées au GTP). Identifier de nouveaux partenaires de communication des sous-unités Ga se révèle être un moyen attractif de comprendre la machinerie de la signalisation par les GPCRs. Dans notre laboratoire nous nous sommes concentrés principalement sur Gao qui est exprimée de manière abondante dans le système nerveux. Nous présentons ici deux nouveaux partenaires qui interagissent avec Gao chez la drosophile: Dhit et Kermit, qui ont été identifiés respectivement par la méthode du yeast two-hybrid et par criblage génétique. Dhit est caractérisé par une petite taille, avec un domaine RGS conservé et un motif N- terminal riche en cystéines. Le domaine RGS contient une activité GAP (GTPase activating protein) pour les protéines G. Toutefois, nous avons découvert que Dhit exerce non seulement une activité GAP mais aussi une activité GDI (guanine nucleotide dissociation inhibitor) à l'égard de Gao. Cette activité GDI inattendue est préservée dans RGS19 - un homologue de Dhit chez les mammifères. Des expériences supplémentaires ont confirmé l'activité GDI de Dhit et de RGS19 chez Drosophila melanogaster et les modèles cellulaires mammifères. Par conséquent, nous proposons que Dhit et ses homologues mammifères modulent la signalisation GPCR par une double suppression des sous-unités Ga - suppression de leur nucléotide d'échange avec le GTP et une accélération dans leur hydrolyse du GTP. Kermit/GIPC a été premièrement identifié comme un partenaire de liaison de RGS19 dans le criblage par yeast two-hybrid. Au lieu d'interagir avec l'homologue chez la drosophile de RGS19 (Dhit), Kermit se lie à Gao in vivo et in vitro. La conséquence fonctionnelle de l'interaction Kermit/Gao est la régulation de la localisation de Vang, un des composants essentiel de la polarité planaire cellulaire, à la membrane apicale. Globalement, mon travail a démontré l'action de Gao avec ses deux partenaires d'interaction dans la voie de signalisation médiée par Gao. La compréhension de la signalisation par les GPCRs incluant Gao et ses régulateurs ou effecteurs aboutira à mettre en lumière de futurs axes dans la recherche pharmacologique.
Resumo:
The purpose of this study was to evaluate the intraocular pressure (IOP)-lowering effect of modified goniopuncture with the 532-nm Nd : YAG selective laser trabeculoplasty (SLT) laser on eyes after deep sclerectomy with collagen implant (DSCI). This was an interventional cased series. The effects of modified goniopuncture on eyes with insufficient IOP-lowering after DSCI were observed. Goniopuncture was performed using a Q-switched, frequency-doubled 532-nm Nd : YAG laser (SLT-goniopuncture, SLT-G). Outcome measures were amount of IOP-lowering and rapidity of decrease after laser intervention. In all, 10 eyes of 10 patients with a mean age of 71.0±7.7 (SD) years were treated with SLT-G. The mean time of SLT-G after DSCI procedure was 7.1±10.9 months. SLT-G decreased IOP from an average of 16.1±3.4 mm Hg to 14.2±2.8 mm Hg (after 15 min), 13.6±3.9 mm Hg (at 1 day), 12.5±4.1 mm Hg (at 1 month), and 12.6±2.5 (at 6 months) (P<0.0125). There were no complications related to the intervention. Patients in this series achieved an average 22.5% of IOP reduction after SLT-G. The use of the SLT laser appears to be an effective and safe alternative to the traditional Nd : YAG laser for goniopuncture in eyes after DSCI, with potential advantages related to non-perforation of trabeculo-descemet's membrane (TDM).
Resumo:
Purpose:To evaluate the histological features of cellular retinal fragments on the internal limiting membrane (ILM) removed during epiretinal membrane peeling surgery with and without the aid of ICG diluted in 5% glucose Methods:ILM specimens removed from 88 eyes undergoing vitrectomy and membrane peeling surgery for idiopathic epiretinal membrane between 1995 and 2003 were reviewed retrospectively. Surgery was performed in all cases by the same surgeon using the same technique. ICG was diluted with 5% glucose. Histological analysis focused on the presence and characteristics of retinal structures on the retinal surface of the ILM. Statistical analysis compared the results between group I (conventional surgery without ICG) and group II (ICG-assisted peeling) Results:Seventy-one eyes underwent EMM surgery without the aid of ICG (group I) and seventeen underwent EMM ICG-assisted surgery assisted using ICG (group II). The amount of Muller cell debris on the retinal surface of the ILM was more significant in the group I (no ICG) than in the group II (ICG) (40.8 versus 11.8; p = 0.024). Large fragments of Muller cells were more frequently observed in the group I (no ICG) than in the group II (ICG) (63.4% versus 23.5%; p= 0.003).The presence of larger retinal elements such as neural axons and vessels were observed attached to retinal face of the ILM in 5 (7%) cases of the no-ICG group. No such retinal elements were detected in any of the histological ILM specimens of the ICG-assisted group Conclusions:The use of ICG diluted with 5% glucose in the aid of ILM removal during epiretinal membrane surgery was associated with less retinal debris attached to retinal face of the ILM compared to surgery in which ICG was not used. Our findings contradict previous reports in the literature, in which use of ICG diluted with balanced salt solution (BSS) was associated with more retinal fragments attached to the retinal face of the ILM. According to our results, we hypothesize that diluting ICG with 5% glucose may decrease the adhesion of the ILM to the underlying retinal layers such that less retinal debris is removed with peeling of the ILM.
Resumo:
The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity, mitochondrial antiviral signaling protein (MAVS) and TRIF, a phosphatase involved in growth factor signaling, T-cell protein tyrosine phosphatase (TC-PTP), and the E3 ubiquitin ligase component UV-damaged DNA-binding protein 1 (DDB1). Here we explored quantitative proteomics to identify novel cellular substrates of the NS3-4A protease. Cell lines inducibly expressing the NS3-4A protease were analyzed by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. This approach identified the membrane-associated peroxidase GPx8 as a bona fide cellular substrate of the HCV NS3-4A protease. Cleavage by NS3-4A occurs at Cys 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic HCV. Overexpression and RNA silencing studies revealed that GPx8 is involved in viral particle production but not in HCV entry or RNA replication. Conclusion: We provide proof-of-concept for the use of quantitative proteomics to identify cellular substrates of a viral protease and describe GPx8 as a novel proviral host factor targeted by the HCV NS3-4A protease. (Hepatology 2014;59:423-433).
Resumo:
Understanding how plants sense and respond to heat stress is central to improve crop tolerance and productivity. Recent findings in Physcomitrella patensdemonstrated that the controlled passage of calcium ions across the plasma membrane regulates the heat shock response (HSR). To investigate the effect of membrane lipid composition on the plant HSR, we acclimated P. patens to a slightly elevated yet physiological growth temperature and analysed the signature of calcium influx under a mild heat shock. Compared to tissues grown at 22°C, tissues grown at 32°C had significantly higher overall membrane lipid saturation level and, when submitted to a short heat shock at 35°C, displayed a noticeably reduced calcium influx and a consequent reduced heat shock gene expression. These results show that temperature differences, rather than the absolute temperature, determine the extent of the plant HSR and indicate that membrane lipid composition regulates the calcium-dependent heat-signaling pathway.
Resumo:
The objective of this work was to assess stimulated latex flow from rubber trees (Hevea brasiliensis) with saturated macrolide (latrunculin A), 1, 5, and 10% potassium iodide in 2% methylcellulose compared with 0.3% ethylene in 2% methylcellulose (check) and 2% methylcellulose (blank). Latex output and contents of pure rubber, total solid, sucrose, inorganic phosphorus, thiol, and Mg2+ were measured. The treatments containing 1% KI or saturated macrolide increased latex yields compared to the blank with 2% methylcellulose alone. The 1% KI or saturated macrolide treatments were equal to that of 0.3% ethylene check treatment. However, 5 and 10% KI were harmful to bark of rubber trees, even caused prolonged tapping panel dryness.
Resumo:
Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal
Resumo:
The objective of this work was to determine the effects of seed priming and sulfur application on cell membrane characteristics, seedling emergence, chlorophyll content and grain yield of soybean (Glycine max) in saline soil. A complete-block design in 4x3 factorial arrangement with three replicates was used to test four types of seed priming (water, auxin, gibberellin and non-priming) and three levels of sulfate availability (0, 70 and 140 kg ha-1 K2SO4). The soil had a silty loam texture with an electrical conductivity of 3.61 ds m-1, a pH of 8.2 and a saturation percentage of about 46%. Seed priming had significant effects on mean emergence rate (MER), emergence percentage, relative water content (RWC) of leaves, relative chlorophyll content, time of maturity, shoot length and grain yield. The highest values for these variables were observed in the priming treatments, except for the time of maturity. Sulfur application had significant effects on MER, shoot length, RWC, membrane injury index and grain yield. Priming treatments provide greater emergence rates and grain yields and interact sinergicaly with sulfur rates.
Resumo:
Oligogalacturonides are plant cell wall-derived regulatory molecules which stimulate defense gene expression during pathogenesis. In vitro, these compounds enhance the phosphorylation of an approximately 34-kDa protein (pp34) in purified plasma membranes from potato and tomato leaves. We now show that polygalacturonate-enhanced phosphorylation of pp34 occurs in plasma membranes purified from tomato roots, hypocotyls, and stems and from undifferentiated potato cells. Furthermore, a similar phosphorylation is detected in leaf plasma membranes from soybean, a plant distantly related to tomato. Purified oligogalacturonides 13 to at least 26 residues long stimulate pp34 thiophosphorylation in vitro. This stimulation pattern differs from the induction of many known defense responses in vivo, where a narrower range of smaller fragments, between approximately 10 and 15 residues long, are active. On the basis of these differences we suggest that observed effects of applied exogenous oligogalacturonides on defense responses may not necessarily reflect the situation during pathogenesis. The cell wall could act as a barrier to many exogenous oligo- and polygalacturonides as well as other large regulatory ligands.