983 resultados para Laser Microdissection Microscopy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of both thermal treatment and laser irradiation on the structural and optical properties of films in the Sb 2 O 3 –Sb 2 S 3 system was investigated. The films were prepared by RF-sputtering using glass compositions as raw materials. Irreversible photodarkening effect was observed after exposure the films to a 458nm solid state laser. It is shown, for the first time, the use of holographic technique to measure “in situ”, simultaneously and independently, the phase and amplitude modulations in glassy films. The films were also photo-crystallized and analysed “in situ” using a laser coupled to a micro-Raman equipment. Results showed that Sb 2 S 3 crystalline phase was obtained after irradiation. The effect of thermal annealing on the structure of the films was carried out. Different from the result obtained by irradiation, thermal annealing induces the crystallization of the Sb 2 O 3 phase. Photo and thermal induced effects on films were studied using UV–Vis and Raman spectroscopy, atomic force microscopy (AFM), thermal analysis (DSC), X-ray diffraction, scanning electron microscopy (MEV) and energy-dispersive X-ray spectroscopy (EDX).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the effect of Er,Cr:YSGG laser irradiation on the external adaptation of composite resin restorations in caries-affected cavities. Mixed class V cavity preparations were performed in 36 intact human third molars, in half of which caries was artificially induced. Both healthy and carious dentin were etched with 35% phosphoric acid (Ultradent Products Inc., South Jordan, Utah, USA), and the teeth were divided into three groups, i.e., (a) untreated etched dentin, (b) application of the Er, Cr:YSGG laser and (c) use of chlorhexidine as an adjunct in the bonding process. Restorations were fabricated with Z350 XT FiltekTM composite resin (3M ESPE) and subsequently the specimens were subjected to thermocycling to simulate artificial ageing. Quantitative analysis of external adaptation was performed by scanning electron microscopy in both healthy and affected dentin using epoxy resin replicas. It was concluded that the application of laser and chlorhexidine did not affect the percentages of marginal adaptation of class V restorations. Furthermore, thermocycling may influence adaptation values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effects of different power parameters of an Erbium, Cromium: Yttrium, Scandium, Gallium, Garnet laser (Er,Cr:YSGG laser) on the morphology, attachment of blood components (ABC), roughness, and wear on irradiated root surfaces. Sixty-five incisive bovine teeth were used in this study, 35 of which were used for the analysis of root surface morphology and ABC. The remaining 30 teeth were used for roughness and root wear analysis. The samples were randomly allocated into seven groups: G1: Er,Cr:YSGG laser, 0.5 W; G2: Er,Cr:YSGG laser, 1.0 W; G3: Er,Cr:YSGG laser, 1.5 W; G4: Er,Cr:YSGG laser, 2.0 W; G5: Er,Cr:YSGG laser, 2.5 W; G6: Er,Cr:YSGG laser, 3.0 W; G7: scaling and root planning (SRP) with manual curettes. The root surfaces irradiated by Er,Cr:YSGG at 1.0 W and scaling with manual curettes presented the highest degrees of ABC. The samples irradiated by the Er,Cr:YSGG laser were rougher than the samples treated by the manual curette, and increasing the laser power parameters caused more root wear and greater roughness on the root surface. The Er,Cr:YSGG laser is safe to use for periodontal treatment, but it is not appropriate to use irradiation greater than 1.0 W for this purpose. Microsc. Res. Tech. 78:529–535, 2015. © 2015 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: A morphological and ultra-structural study of copper vapor laser (λ = 510.6 nm) effects on enamel and dentine was performed to show the effects of this radiation. Methods: A total of 15 human molars were cut in half; 15 pieces were separated for irradiation on enamel and 15 for dentine. These two groups were further divided into five experimental groups, including a control group, comprised of three half-sections each, irradiated by a CVL laser with a power of 7 W, a repetition rate of 15,000 pulses/sec and exposed at 500, 600, and 800 msec and 1 sec irradiation times with a 5-sec interval between irradiations. Results: In an ultra-structural SEM exam, we observed that on the enamel surfaces irradiated for 1 sec there was morphological alteration that consisted of catering, flaking, and melting on the surfaces. There was no alteration for the other exposure times. On the dentine teeth irradiated for 1 sec, we observed an evident ultra-structural alteration of melted tissue and loss of morphological characteristics. In the dentine group irradiated by 800 msec, we observed ablation and a partial loss of morphological characteristics. In the dentine groups irradiated by 500 and 600 msec, no alteration was observed. Conclusions: The results showed that irradiation with CVL promoted morphologic changes in the enamel as well as in the dentine and demonstrated a need for future studies in order to establish a safe protocol for further use in the odontological practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho investigou-se a modificação de superfície do titânio pela irradiação com feixe de Laser Nd:YAG. Os parâmetros do laser como a potência, o comprimento de onda, a frequência, a velocidade de varredura e a área de exposição foram mantidos constantes, exceto o espaçamento da matriz, o qual foi de 0,01 e 0,02 mm. A caracterização da superfície foi realizada por Microscopia Eletrônica de Varredura (MEV) e Difração de Raios X (DRX), sendo que os espectros foram refinados pelo método Rietveld. Pela análise de MEV, observou-se uma mudança na topografia, obtendo uma superfície rugosa produzida pelo fenômeno de ablação. As análises por Rietveld dos espectros de difração de raios X detectaram TiN, Ti2N, TiO2 (anatásio e rutilo), sendo que a amostra com espaçamento 0,01 mm apresentou uma maior quantidade de óxidos e nitretos. Isso pode ser devido à sobreposição do feixe, induzindo à formação de uma superfície com maior estabilidade termodinâmica. Os óxidos e nitretos obtidos são de grande importância, pois são responsáveis por produzir uma maior interação entre o osso-implante.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: As a new alternative in the complementary treatment lasers teem different systems were employed in the decontamination of dental surfaces implants however, some systems have caused significant changes in its surface. Purpose: Analyze by Scanning Electron Microscopy (SEM) the effects of laser irradiation of Er,Cr: YSGG on different surfaces of titanium. Material and method: Study of 20 titanium discs, and 10 Machined Surface (MS) and 10 surfaces treated with acid (AC). The 10 discs with the same treatment were divided into two groups with five units each, the irradiation was performed in powers of 1 W and 2 W. Result: Showed that the irradiation with 1 W of power resulted in no significant morphological changes in the MS-irradiated compared to non-irradiated surfaces. In MS surfaces, minor changes were observed in the increase of 1000× when compared to non-irradiated surface. With 2 W of power, there were no significant morphological changes in the MS, compared to non-irradiated areas. In AC some changes were observed in the increase of X 1000, showing areas of wear suggestive of treatment and some areas with melting point. Conclusion: Considering the results and the parameters used in this study it was concluded that the Er, Cr: YSGG irradiation can be used for the machined surfaces of implants, but in acid-treated surfaces irradiation parameters should be more controlled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO4. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm(-2)), 2 mu s delay time and 6 mu s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glasses containing metallic nanoparticles are promising materials for technological applications in optics and photonics. Although several methods are available to generate nanoparticles in glass, only femtosecond lasers allow controlling it three-dimensionally. In this direction, the present work investigates the generation of copper nanoparticles on the surface and in the bulk of a borosilicate glass by fs-laser irradiation. We verified the formation of copper nanoparticles, after heat treatment, by UV-Vis absorption, transmission electron microscopy and electron diffraction. A preferential growth of copper nanoparticles was observed in the bottom of the irradiated region, which was attributed to self-focusing in the glass. (c) 2012 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate whether Nd:YAG laser irradiation of etched and unetched dentin through an uncured adhesive affected the microtensile bond strength (pTBS). Materials and Methods: Flat dentin surfaces were created in 19 extracted human third molars. Adper Single Bond (SB) adhesive was applied over etched (groups 1 to 3) or unetched dentin (groups 4 to 6). The dentin was then irradiated with a Nd:YAG laser through the uncured adhesive, using 0.75 or 1 W power settings, except for the control groups (groups 1 and 4). The adhesive was light cured and composite crowns were built up. After 24 h, the teeth were sectioned into beams, with cross-sectional areas of 0.49 mm(2), and were stressed under tension. Data were statistically analyzed using two-way ANOVA and Tukey's test (alpha = 5%). Dentin surfaces of fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). Results: Acid etching, laser irradiation, and their interaction significantly affected bonding (p < 0.05). Laser irradiation did not improve bonding of etched dentin to resin (p > 0.05). However, higher pTBS means were found on unetched lased dentin (groups 5 and 6), but only in comparison to group 4, where neither lasing nor etching was performed. Groups 4 to 6 showed the lowest pTBS means among all groups tested (p < 0.05). Laser irradiation did not change the characteristics of the hybrid layers created, while solidification globules were observed on lased dentin surfaces under SEM. Conclusion: Laser irradiation of dentin through the uncured adhesive did not significantly improve the pTBS in comparison to the suggested manufacturer's technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a part of the AMAZE-08 campaign during the wet season in the rainforest of central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS) was operated for continuous measurements of fluorescent biological aerosol particles (FBAP). In the coarse particle size range (> 1 mu m) the campaign median and quartiles of FBAP number and mass concentration were 7.3x10(4) m(-3) (4.0-13.2x10(4) m(-3)) and 0.72 mu g m(-3) (0.42-1.19 mu g m(-3)), respectively, accounting for 24% (11-41%) of total particle number and 47% (25-65%) of total particle mass. During the five-week campaign in February-March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 mu m, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM), light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP) mode between 0.5 and 1.0 mu m was also observed by SEM, but exhibited little fluorescence and no true fungal staining. This mode may have consisted of single bacterial cells, brochosomes, various fragments of biological material, and small Chromalveolata (Chromista) spores. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF) techniques using 355 nm excitation provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles in a pristine environment. We also show some limitations of using the instrument for ambient monitoring of weakly fluorescent particles < 2 mu m. Our measurements confirm that primary biological particles, fungal spores in particular, are an important fraction of supermicron aerosol in the Amazon and that may contribute significantly to hydrological cycling, especially when coated by mixed inorganic material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the synthesis of Au nanoparticles by 30-fs pulses irradiation of a sample containing HAuCl4 and chitosan, a biopolymer used as reducing agent and stabilizer. We observed that it is a multi-photon induced process, with a threshold irradiance of 3.8 x 10(11) W/cm(2) at 790 nm. By transmission electron microscopy we observed nanoparticles from 8 to 50 nm with distinct shapes. Infrared spectroscopy indicated that the reduction of gold and consequent production of nanoparticles is related to the fs-pulse induced oxidation of hydroxyl to carbonyl groups in chitosan. (C) 2011 Optical Society of America