965 resultados para LOCATION NETWORK WWLLN
Resumo:
Baseline monitoring of groundwater quality aims to characterize the ambient condition of the resource and identify spatial or temporal trends. Sites comprising any baseline monitoring network must be selected to provide a representative perspective of groundwater quality across the aquifer(s) of interest. Hierarchical cluster analysis (HCA) has been used as a means of assessing the representativeness of a groundwater quality monitoring network, using example datasets from New Zealand. HCA allows New Zealand's national and regional monitoring networks to be compared in terms of the number of water-quality categories identified in each network, the hydrochemistry at the centroids of these water-quality categories, the proportions of monitoring sites assigned to each water-quality category, and the range of concentrations for each analyte within each water-quality category. Through the HCA approach, the National Groundwater Monitoring Programme (117 sites) is shown to provide a highly representative perspective of groundwater quality across New Zealand, relative to the amalgamated regional monitoring networks operated by 15 different regional authorities (680 sites have sufficient data for inclusion in HCA). This methodology can be applied to evaluate the representativeness of any subset of monitoring sites taken from a larger network.
Resumo:
Efficient caring for the patient's information is an important aspect of caring for the patient. If these processes are possible to monitor anytime anywhere as per the patients' and doctors desecrations the cost of patient care could be minimised. In this connection, Ubiquitous Sensor Network is playing a key role on communication between physicians and patients as well as information sharing among health care providers with rapid access to medical information through reliable and trusted computer network systems. This paper argues possibilities of such scenarios by introducing a ubiquitous sensor network in patient care for 21st century's requirements and standards.
Measuring creative potential: Using social network analysis to monitor a learners' creative capacity
Resumo:
Background Canonical serine protease inhibitors commonly bind to their targets through a rigid loop stabilised by an internal hydrogen bond network and disulfide bond(s). The smallest of these is sunflower trypsin inhibitor (SFTI-1), a potent and broad-range protease inhibitor. Recently, we re-engineered the contact β-sheet of SFTI-1 to produce a selective inhibitor of kallikrein-related peptidase 4 (KLK4), a protease associated with prostate cancer progression. However, modifications in the binding loop to achieve specificity may compromise structural rigidity and prevent re-engineered inhibitors from reaching optimal binding affinity. Methodology/Principal Findings In this study, the effect of amino acid substitutions on the internal hydrogen bonding network of SFTI were investigated using an in silico screen of inhibitor variants in complex with KLK4 or trypsin. Substitutions favouring internal hydrogen bond formation directly correlated with increased potency of inhibition in vitro. This produced a second generation inhibitor (SFTI-FCQR Asn14) which displayed both a 125-fold increased capacity to inhibit KLK4 (Ki = 0.0386±0.0060 nM) and enhanced selectivity over off-target serine proteases. Further, SFTI-FCQR Asn14 was stable in cell culture and bioavailable in mice when administered by intraperitoneal perfusion. Conclusion/Significance These findings highlight the importance of conserving structural rigidity of the binding loop in addition to optimising protease/inhibitor contacts when re-engineering canonical serine protease inhibitors.
Resumo:
Decision table and decision rules play an important role in rough set based data analysis, which compress databases into granules and describe the associations between granules. Granule mining was also proposed to interpret decision rules in terms of association rules and multi-tier structure. In this paper, we further extend granule mining to describe the relationships between granules not only by traditional support and confidence, but by diversity and condition diversity as well. Diversity measures how diverse of a granule associated with the other ganules, it provides a kind of novel knowledge in databases. Some experiments are conducted to test the proposed new concepts for describing the characteristics of a real network traffic data collection. The results show that the proposed concepts are promising.
Resumo:
The research team recognized the value of network-level Falling Weight Deflectometer (FWD) testing to evaluate the structural condition trends of flexible pavements. However, practical limitations due to the cost of testing, traffic control and safety concerns and the ability to test a large network may discourage some agencies from conducting the network-level FWD testing. For this reason, the surrogate measure of the Structural Condition Index (SCI) is suggested for use. The main purpose of the research presented in this paper is to investigate data mining strategies and to develop a prediction method of the structural condition trends for network-level applications which does not require FWD testing. The research team first evaluated the existing and historical pavement condition, distress, ride, traffic and other data attributes in the Texas Department of Transportation (TxDOT) Pavement Maintenance Information System (PMIS), applied data mining strategies to the data, discovered useful patterns and knowledge for SCI value prediction, and finally provided a reasonable measure of pavement structural condition which is correlated to the SCI. To evaluate the performance of the developed prediction approach, a case study was conducted using the SCI data calculated from the FWD data collected on flexible pavements over a 5-year period (2005 – 09) from 354 PMIS sections representing 37 pavement sections on the Texas highway system. The preliminary study results showed that the proposed approach can be used as a supportive pavement structural index in the event when FWD deflection data is not available and help pavement managers identify the timing and appropriate treatment level of preventive maintenance activities.
Resumo:
Networks have come to the fore as a means by which government can achieve its strategic objectives, particularly when addressing complex or “wicked” issues. Such joined-up arrangements differ in their operations from other forms of organizing as they require collaborative effort to deliver the collaborative advantage. Strategic Human Resource Management is concerned with the matching of human resource practices to the strategic direction of organizations. It is argued that the strategic direction of government has been towards network involvement and that, as a result, a reconfiguration of Human Resource Management practices is needed to support this new direction. Drawing on eight network case studies findings are presented in relation to the roles government is expected to play in networks and conclusions are drawn about what types of human resource management practices would best support those roles. Implications for Strategic Human Resource Management are posited.
Resumo:
Background Bactrocera dorsalis s.s. is a pestiferous tephritid fruit fly distributed from Pakistan to the Pacific, with the Thai/Malay peninsula its southern limit. Sister pest taxa, B. papayae and B. philippinensis, occur in the southeast Asian archipelago and the Philippines, respectively. The relationship among these species is unclear due to their high molecular and morphological similarity. This study analysed population structure of these three species within a southeast Asian biogeographical context to assess potential dispersal patterns and the validity of their current taxonomic status. Results Geometric morphometric results generated from 15 landmarks for wings of 169 flies revealed significant differences in wing shape between almost all sites following canonical variate analysis. For the combined data set there was a greater isolation-by-distance (IBD) effect under a ‘non-Euclidean’ scenario which used geographical distances within a biogeographical ‘Sundaland context’ (r2 = 0.772, P < 0.0001) as compared to a ‘Euclidean’ scenario for which direct geographic distances between sample sites was used (r2 = 0.217, P < 0.01). COI sequence data were obtained for 156 individuals and yielded 83 unique haplotypes with no correlation to current taxonomic designations via a minimum spanning network. BEAST analysis provided a root age and location of 540kya in northern Thailand, with migration of B. dorsalis s.l. into Malaysia 470kya and Sumatra 270kya. Two migration events into the Philippines are inferred. Sequence data revealed a weak but significant IBD effect under the ‘non-Euclidean’ scenario (r2 = 0.110, P < 0.05), with no historical migration evident between Taiwan and the Philippines. Results are consistent with those expected at the intra-specific level. Conclusions Bactrocera dorsalis s.s., B. papayae and B. philippinensis likely represent one species structured around the South China Sea, having migrated from northern Thailand into the southeast Asian archipelago and across into the Philippines. No migration is apparent between the Philippines and Taiwan. This information has implications for quarantine, trade and pest management.
Resumo:
Cloud computing has emerged as a major ICT trend and has been acknowledged as a key theme of industry by prominent ICT organisations. However, one of the major challenges that face the cloud computing concept and its global acceptance is how to secure and protect the data that is the property of the user. The geographic location of cloud data storage centres is an important issue for many organisations and individuals due to the regulations and laws that require data and operations to reside in specific geographic locations. Thus, data owners may need to ensure that their cloud providers do not compromise the SLA contract and move their data into another geographic location. This paper introduces an architecture for a new approach for geographic location assurance, which combines the proof of storage protocol (POS) and the distance-bounding protocol. This allows the client to check where their stored data is located, without relying on the word of the cloud provider. This architecture aims to achieve better security and more flexible geographic assurance within the environment of cloud computing.
Resumo:
The monitoring sites comprising a state of the environment (SOE) network must be carefully selected to ensure that they will be representative of the broader resource. Hierarchical cluster analysis (HCA) is a data-driven technique that can potentially be employed to assess the representativeness of a SOE monitoring network. The objective of this paper is to explore the use of HCA as an approach for assessing the representativeness of the New Zealand National Groundwater Monitoring Programme (NGMP), which is comprised of 110 monitoring sites across the country.
Resumo:
The increasingly widespread use of large-scale 3D virtual environments has translated into an increasing effort required from designers, developers and testers. While considerable research has been conducted into assisting the design of virtual world content and mechanics, to date, only limited contributions have been made regarding the automatic testing of the underpinning graphics software and hardware. In the work presented in this paper, two novel neural network-based approaches are presented to predict the correct visualization of 3D content. Multilayer perceptrons and self-organizing maps are trained to learn the normal geometric and color appearance of objects from validated frames and then used to detect novel or anomalous renderings in new images. Our approach is general, for the appearance of the object is learned rather than explicitly represented. Experiments were conducted on a game engine to determine the applicability and effectiveness of our algorithms. The results show that the neural network technology can be effectively used to address the problem of automatic and reliable visual testing of 3D virtual environments.