993 resultados para LASER data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through the use of Transient Diode Laser Absorption Spectroscopy (TDLAS), the rate coefficient for the vibrational relaxation of N2O (ν2) by O(3P) at room temperature (32 ºC)) was determined to be (1.51 ± 0.11)x10-12 cm3molecule-1sec-1. A Q-switched, frequency quadrupled (266 nm) Nd:YAG laser pulse was used as the pump for this experiment. This pulse caused the photodissociation of O3 into O2 and O atoms.Excited oxygen (O(1D)) was collisionally quenched to ground state (O(3P)) by Ar and/or Xe. Photodissociation also caused a temperature jump within the system, exciting the ν2 state of N2O molecules. Population in the ν2 state was monitored through a TDLASobservation of a ν3 transition. Data were fit using a Visual Fortran 6.0 Global Fitting program. Analysis of room temperature data taken using only Ar to quench O atoms to the ground state gave the same rate coefficient as analysis of data taken using an Ar/Xe mixture, suggesting Ar alone is a sufficient bath gas. Experimentation was alsoperformed at -27 ºC and -82 ºC for a temperature dependence analysis. A linear regression analysis gave a rate coefficient dependence on temperature of ... for the rate coefficient of the vibrational relaxation of N2O (ν2) by atomic oxygen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studying liquid fuel combustion is necessary to better design combustion systems. Through more efficient combustors and alternative fuels, it is possible to reduce greenhouse gases and harmful emissions. In particular, coal-derived and Fischer-Tropsch liquid fuels are of interest because, in addition to producing fewer emissions, they have the potential to drastically reduce the United States' dependence on foreign oil. Major academic research institutions like the Pennsylvania State University perform cutting-edge research in many areas of combustion. The Combustion Research Laboratory (CRL) at Bucknell University is striving to develop the necessary equipment to be capable of both independent and collaborative research efforts with Penn State and in the process, advance the CRL to the forefront of combustion studies. The focus of this thesis is to advance the capabilities of the Combustion Research Lab at Bucknell. Specifically, this was accomplished through a revision to a previously designed liquid fuel injector, and through the design and installation of a laser extinction system for the measurement of soot produced during combustion. The previous liquid fuel injector with a 0.005" hole did not behave as expected. Through spray testing the 0.005" injector with water, it was determined that experimental errors were made in the original pressure testing of the injector. Using data from the spray testing experiment, new theoretical hole sizes of the injector were calculated. New injectors with 0.007" and 0.0085" orifices were fabricated and subsequently tested to qualitatively validate their behavior. The injectors were installed in the combustion rig in the CRL and hot-fire tested with liquid heptane. The 0.0085" injector yielded a manageable fuel pressure and produced a broad flame. A laser extinction system was designed and installed in the CRL. This involved the fabrication of a number of custom-designed parts and the specification of laser extinction equipment for purchase. A standard operating procedure for the laser extinction system was developed to provide a consistent, safe method for measuring soot formation during combustion.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECT: Patients with complex craniocerebral pathophysiologies such as giant cerebral aneurysms, skull base tumors, and/or carotid artery occlusive disease are candidates for a revascularization procedure to augment or preserve cerebral blood flow. However, the brain is susceptible to ischemia, and therefore the excimer laser-assisted nonocclusive anastomosis (ELANA) technique has been developed to overcome temporary occlusion. Harvesting autologous vessels of reasonable quality, which is necessary for this technique, may at times be problematic or impossible due to the underlying systemic vascular disease. The use of artificial vessels is therefore an alternative graft for revascularization. Note, however, that it is unknown to what degree these grafts are subject to occlusion using the ELANA anastomosis technique. Therefore, the authors studied the ELANA technique in combination with an expanded polytetrafluoroethylene (ePTFE) graft. METHODS: The experimental surgeries involved bypassing the abdominal aorta in the rabbit. Ten rabbits were subjected to operations representing 20 ePTFE graft-ELANA end-to-side anastomoses. Intraoperative blood flow, followup angiograms, and long-term histological characteristics were assessed 75, 125, and 180 days postoperatively. Angiography results proved long-term patency of ePTFE grafts in all animals at all time points studied. Data from the histological analysis showed minimal intimal reaction at the anastomosis site up to 180 days postoperatively. Endothelialization of the ePTFE graft was progressive over time. CONCLUSIONS: The ELANA technique in combination with the ePTFE graft seems to have favorable attributes for end-to-side anastomoses and may be suitable for bypass procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With recent advances in mass spectrometry techniques, it is now possible to investigate proteins over a wide range of molecular weights in small biological specimens. This advance has generated data-analytic challenges in proteomics, similar to those created by microarray technologies in genetics, namely, discovery of "signature" protein profiles specific to each pathologic state (e.g., normal vs. cancer) or differential profiles between experimental conditions (e.g., treated by a drug of interest vs. untreated) from high-dimensional data. We propose a data analytic strategy for discovering protein biomarkers based on such high-dimensional mass-spectrometry data. A real biomarker-discovery project on prostate cancer is taken as a concrete example throughout the paper: the project aims to identify proteins in serum that distinguish cancer, benign hyperplasia, and normal states of prostate using the Surface Enhanced Laser Desorption/Ionization (SELDI) technology, a recently developed mass spectrometry technique. Our data analytic strategy takes properties of the SELDI mass-spectrometer into account: the SELDI output of a specimen contains about 48,000 (x, y) points where x is the protein mass divided by the number of charges introduced by ionization and y is the protein intensity of the corresponding mass per charge value, x, in that specimen. Given high coefficients of variation and other characteristics of protein intensity measures (y values), we reduce the measures of protein intensities to a set of binary variables that indicate peaks in the y-axis direction in the nearest neighborhoods of each mass per charge point in the x-axis direction. We then account for a shifting (measurement error) problem of the x-axis in SELDI output. After these pre-analysis processing of data, we combine the binary predictors to generate classification rules for cancer, benign hyperplasia, and normal states of prostate. Our approach is to apply the boosting algorithm to select binary predictors and construct a summary classifier. We empirically evaluate sensitivity and specificity of the resulting summary classifiers with a test dataset that is independent from the training dataset used to construct the summary classifiers. The proposed method performed nearly perfectly in distinguishing cancer and benign hyperplasia from normal. In the classification of cancer vs. benign hyperplasia, however, an appreciable proportion of the benign specimens were classified incorrectly as cancer. We discuss practical issues associated with our proposed approach to the analysis of SELDI output and its application in cancer biomarker discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrous oxide fluxes were measured at the Lägeren CarboEurope IP flux site over the multi-species mixed forest dominated by European beech and Norway spruce. Measurements were carried out during a four-week period in October–November 2005 during leaf senescence. Fluxes were measured with a standard ultrasonic anemometer in combination with a quantum cascade laser absorption spectrometer that measured N2O, CO2, and H2O mixing ratios simultaneously at 5 Hz time resolution. To distinguish insignificant fluxes from significant ones it is proposed to use a new approach based on the significance of the correlation coefficient between vertical wind speed and mixing ratio fluctuations. This procedure eliminated roughly 56% of our half-hourly fluxes. Based on the remaining, quality checked N2O fluxes we quantified the mean efflux at 0.8±0.4 μmol m−2 h−1 (mean ± standard error). Most of the contribution to the N2O flux occurred during a 6.5-h period starting 4.5 h before each precipitation event. No relation with precipitation amount could be found. Visibility data representing fog density and duration at the site indicate that wetting of the canopy may have as strong an effect on N2O effluxes as does below-ground microbial activity. It is speculated that above-ground N2O production from the senescing leaves at high moisture (fog, drizzle, onset of precipitation event) may be responsible for part of the measured flux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discussion of a new, innovative method for dating rocks, called laser ablation split stream (LASS) petrochronology, which is an in situ method that couples geochronological and geochemical data of minerals that remain in the rock matrix. The talk focuses on the application of this technique with U-Th-Pb dating of the phosphate minerals monazite and xenotine in metamorphic rocks. Examples from the Ruby Range in southwestern Montana and metamorphic core complexes in the northern Idaho panhandle will be explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to determine the influence of polyvinyl chloride (PVC) wrapping on the performance of two laser fluorescence devices (LF and LFpen) by assessing tooth occlusal surfaces. BACKGROUND DATA: Protection of their tips may influence LF measurements. To date there are no studies evaluating the influence of this protection on the performance of the LFpen on permanent teeth, or comparing it to the original LF device. MATERIALS AND METHODS: One hundred nineteen permanent molars were assessed by two experienced dentists using the LF and the LFpen devices, both with and without PVC wrapping. The teeth were histologically prepared and assessed for caries extension. RESULTS: The LF values with and without PVC wrapping were significantly different. For both LF devices, the sensitivity and accuracy were lower when the PVC wrapping was used. The specificity was statistically significantly higher for the LFpen with PVC. No difference was found between the areas under the ROC curves with and without PVC wrapping. The ICC showed excellent interexaminer agreement. The Bland and Altman method showed a range between the upper and the lower limits of agreement of 63.4 and 57.8 units for the LF device, and 49.4 and 74.2 for the LFpen device, with and without PVC wrapping, respectively. CONCLUSIONS: We found an influence of the PVC wrapping on the performance of the LF and LFpen devices. However, since its influence on detection of occlusal caries lesions is considered for, the use of one PVC layer is suggested to avoid cross-contamination in clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ein auf Basis von Prozessdaten kalibriertes Viskositätsmodell wird vorgeschlagen und zur Vorhersage der Viskosität einer Polyamid 12 (PA12) Kunststoffschmelze als Funktion von Zeit, Temperatur und Schergeschwindigkeit angewandt. Im ersten Schritt wurde das Viskositätsmodell aus experimentellen Daten abgeleitet. Es beruht hauptsächlich auf dem drei-parametrigen Ansatz von Carreau, wobei zwei zusätzliche Verschiebungsfaktoren eingesetzt werden. Die Temperaturabhängigkeit der Viskosität wird mithilfe des Verschiebungsfaktors aT von Arrhenius berücksichtigt. Ein weiterer Verschiebungsfaktor aSC (Structural Change) wird eingeführt, der die Strukturänderung von PA12 als Folge der Prozessbedingungen beim Lasersintern beschreibt. Beobachtet wurde die Strukturänderung in Form einer signifikanten Viskositätserhöhung. Es wurde geschlussfolgert, dass diese Viskositätserhöhung auf einen Molmassenaufbau zurückzuführen ist und als Nachkondensation verstanden werden kann. Abhängig von den Zeit- und Temperaturbedingungen wurde festgestellt, dass die Viskosität als Folge des Molmassenaufbaus exponentiell gegen eine irreversible Grenze strebt. Die Geschwindigkeit dieser Nachkondensation ist zeit- und temperaturabhängig. Es wird angenommen, dass die Pulverbetttemperatur einen Molmassenaufbau verursacht und es damit zur Kettenverlängerung kommt. Dieser fortschreitende Prozess der zunehmenden Kettenlängen setzt molekulare Beweglichkeit herab und unterbindet die weitere Nachkondensation. Der Verschiebungsfaktor aSC drückt diese physikalisch-chemische Modellvorstellung aus und beinhaltet zwei zusätzliche Parameter. Der Parameter aSC,UL entspricht der oberen Viskositätsgrenze, wohingegen k0 die Strukturänderungsrate angibt. Es wurde weiterhin festgestellt, dass es folglich nützlich ist zwischen einer Fließaktivierungsenergie und einer Strukturänderungsaktivierungsenergie für die Berechnung von aT und aSC zu unterscheiden. Die Optimierung der Modellparameter erfolgte mithilfe eines genetischen Algorithmus. Zwischen berechneten und gemessenen Viskositäten wurde eine gute Übereinstimmung gefunden, so dass das Viskositätsmodell in der Lage ist die Viskosität einer PA12 Kunststoffschmelze als Folge eines kombinierten Lasersinter Zeit- und Temperatureinflusses vorherzusagen. Das Modell wurde im zweiten Schritt angewandt, um die Viskosität während des Lasersinter-Prozesses in Abhängigkeit von der Energiedichte zu berechnen. Hierzu wurden Prozessdaten, wie Schmelzetemperatur und Belichtungszeit benutzt, die mithilfe einer High-Speed Thermografiekamera on-line gemessen wurden. Abschließend wurde der Einfluss der Strukturänderung auf das Viskositätsniveau im Prozess aufgezeigt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The space-qualified design of a miniaturized laser for pulsed operation at a wavelength of 1064 nm and at repetition rates up to 10 Hz is presented. This laser consists of a pair of diode-laser pumped, actively q-switched Nd:YAG rod oscillators hermetically sealed and encapsulated in an environment of dry synthetic air. The system delivers at least 300 million laser pulses with 50 mJ energy and 5 ns pulse width (FWHM). It will be launched in 2017 aboard European Space Agency’s Mercury Planetary Orbiter as part of the BepiColombo Laser Altimeter, which, after a 6-years cruise, will start recording topographic data from orbital altitudes between 400 and 1500 km above Mercury’s surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ever increasing number of low Earth orbiting (LEO) satellites is, or will be, equipped with retro-reflectors for Satellite Laser Ranging (SLR) and on-board receivers to collect observations from Global Navigation Satellite Systems (GNSS) such as the Global Positioning Sys- tem (GPS) and the Russian GLONASS and the European Galileo systems in the future. At the Astronomical Insti- tute of the University of Bern (AIUB) LEO precise or- bit determination (POD) using either GPS or SLR data is performed for a wide range of applications for satellites at different altitudes. For this purpose the classical numeri- cal integration techniques, as also used for dynamic orbit determination of satellites at high altitudes, are extended by pseudo-stochastic orbit modeling techniques to effi- ciently cope with potential force model deficiencies for satellites at low altitudes. Accuracies of better than 2 cm may be achieved by pseudo-stochastic orbit modeling for satellites at very low altitudes such as for the GPS-based POD of the Gravity field and steady-state Ocean Circula- tion Explorer (GOCE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time series of geocenter coordinates were determined with data of two global navigation satellite systems (GNSSs), namely the U.S. GPS (Global Positioning System) and the Russian GLONASS (Global’naya Nawigatsionnaya Sputnikowaya Sistema). The data was recorded in the years 2008–2011 by a global network of 92 permanently observing GPS/GLONASS receivers. Two types of daily solutions were generated independently for each GNSS, one including the estimation of geocenter coordinates and one without these parameters. A fair agreement for GPS and GLONASS was found in the geocenter x- and y-coordinate series. Our tests, however, clearly reveal artifacts in the z-component determined with the GLONASS data. Large periodic excursions in the GLONASS geocenter z-coordinates of about 40 cm peak-to-peak are related to the maximum elevation angles of the Sun above/below the orbital planes of the satellite system and thus have a period of about 4 months (third of a year). A detailed analysis revealed that the artifacts are almost uniquely governed by the differences of the estimates of direct solar radiation pressure (SRP) in the two solution series (with and without geocenter estimation). A simple formula is derived, describing the relation between the geocenter z-coordinate and the corresponding parameter of the SRP. The effect can be explained by first-order perturbation theory of celestial mechanics. The theory also predicts a heavy impact on the GNSS-derived geocenter if once-per-revolution SRP parameters are estimated in the direction of the satellite’s solar panel axis. Specific experiments using GPS observations revealed that this is indeed the case. Although the main focus of this article is on GNSS, the theory developed is applicable to all satellite observing techniques. We applied the theory to satellite laser ranging (SLR) solutions using LAGEOS. It turns out that the correlation between geocenter and SRP parameters is not a critical issue for the SLR solutions. The reasons are threefold: The direct SRP is about a factor of 30–40 smaller for typical geodetic SLR satellites than for GNSS satellites, allowing it in most cases to not solve for SRP parameters (ruling out the correlation between these parameters and the geocenter coordinates); the orbital arc length of 7 days (which is typically used in SLR analysis) contains more than 50 revolutions of the LAGEOS satellites as compared to about two revolutions of GNSS satellites for the daily arcs used in GNSS analysis; the orbit geometry is not as critical for LAGEOS as for GNSS satellites, because the elevation angle of the Sun w.r.t. the orbital plane is usually significantly changing over 7 days.