944 resultados para L1 Adaptive Control
Resumo:
At the HL-LHC, proton bunches will cross each other every 25. ns, producing an average of 140 pp-collisions per bunch crossing. To operate in such an environment, the CMS experiment will need a L1 hardware trigger able to identify interesting events within a latency of 12.5. μs. The future L1 trigger will make use also of data coming from the silicon tracker to control the trigger rate. The architecture that will be used in future to process tracker data is still under discussion. One interesting proposal makes use of the Time Multiplexed Trigger concept, already implemented in the CMS calorimeter trigger for the Phase I trigger upgrade. The proposed track finding algorithm is based on the Hough Transform method. The algorithm has been tested using simulated pp-collision data. Results show a very good tracking efficiency. The algorithm will be demonstrated in hardware in the coming months using the MP7, which is a μTCA board with a powerful FPGA capable of handling data rates approaching 1. Tb/s.
Resumo:
In this report, we develop an intelligent adaptive neuro-fuzzy controller by using adaptive neuro fuzzy inference system (ANFIS) techniques. We begin by starting with a standard proportional-derivative (PD) controller and use the PD controller data to train the ANFIS system to develop a fuzzy controller. We then propose and validate a method to implement this control strategy on commercial off-the-shelf (COTS) hardware. An analysis is made into the choice of filters for attitude estimation. These choices are limited by the complexity of the filter and the computing ability and memory constraints of the micro-controller. Simplified Kalman filters are found to be good at estimation of attitude given the above constraints. Using model based design techniques, the models are implemented on an embedded system. This enables the deployment of fuzzy controllers on enthusiast-grade controllers. We evaluate the feasibility of the proposed control strategy in a model-in-the-loop simulation. We then propose a rapid prototyping strategy, allowing us to deploy these control algorithms on a system consisting of a combination of an ARM-based microcontroller and two Arduino-based controllers. We then use a combination of the code generation capabilities within MATLAB/Simulink in combination with multiple open-source projects in order to deploy code to an ARM CortexM4 based controller board. We also evaluate this strategy on an ARM-A8 based board, and a much less powerful Arduino based flight controller. We conclude by proving the feasibility of fuzzy controllers on Commercial-off the shelf (COTS) hardware, we also point out the limitations in the current hardware and make suggestions for hardware that we think would be better suited for memory heavy controllers.
Resumo:
As users continually request additional functionality, software systems will continue to grow in their complexity, as well as in their susceptibility to failures. Particularly for sensitive systems requiring higher levels of reliability, faulty system modules may increase development and maintenance cost. Hence, identifying them early would support the development of reliable systems through improved scheduling and quality control. Research effort to predict software modules likely to contain faults, as a consequence, has been substantial. Although a wide range of fault prediction models have been proposed, we remain far from having reliable tools that can be widely applied to real industrial systems. For projects with known fault histories, numerous research studies show that statistical models can provide reasonable estimates at predicting faulty modules using software metrics. However, as context-specific metrics differ from project to project, the task of predicting across projects is difficult to achieve. Prediction models obtained from one project experience are ineffective in their ability to predict fault-prone modules when applied to other projects. Hence, taking full benefit of the existing work in software development community has been substantially limited. As a step towards solving this problem, in this dissertation we propose a fault prediction approach that exploits existing prediction models, adapting them to improve their ability to predict faulty system modules across different software projects.
Resumo:
The eggs of the dengue fever vector Aedes aegypti possess the ability to undergo an extended quiescence period hosting a fully developed first instar larvae within its chorion. As a result of this life history stage, pharate larvae can withstand months of dormancy inside the egg where they depend on stored reserves of maternal origin. This adaptation known as pharate first instar quiescence, allows A. aegypti to cope with fluctuations in water availability. An examination of this fundamental adaptation has shown that there are trade-offs associated with it. Aedes aegypti mosquitoes are frequently associated with urban habitats that may contain metal pollution. My research has demonstrated that the duration of this quiescence and the extent of nutritional depletion associated with it affects the physiology and survival of larvae that hatch in a suboptimal habitat; nutrient reserves decrease during pharate first instar quiescence and alter subsequent larval and adult fitness. The duration of quiescence compromises metal tolerance physiology and is coupled to a decrease in metallothionein mRNA levels. My findings also indicate that even low levels of environmentally relevant larval metal stress alter the parameters that determine vector capacity. My research has also demonstrated that extended pharate first instar quiescence can elicit a plastic response resulting in an adult phenotype distinct from adults reared from short quiescence eggs. Extended pharate first instar quiescence affects the performance and reproductive fitness of the adult female mosquito as well as the nutritional status of its progeny via maternal effects in an adaptive manner, i.e., anticipatory phenotypic plasticity results as a consequence of the duration of pharate first instar quiescence and alternative phenotypes may exist for this mosquito with quiescence serving as a cue possibly signaling the environmental conditions that follow a dry period. M findings may explain, in part, A. aegypti’s success as a vector and its geographic distribution and have implications for its vector capacity and control.
Resumo:
BACKGROUND Anaplasma phagocytophilum infects a wide variety of hosts and causes granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever in ruminants. Infection with A. phagocytophilum results in the modification of host gene expression and immune response. The objective of this research was to characterize gene expression in pigs (Sus scrofa) naturally and experimentally infected with A. phagocytophilum trying to identify mechanisms that help to explain low infection prevalence in this species. RESULTS For gene expression analysis in naturally infected pigs, microarray hybridization was used. The expression of differentially expressed immune response genes was analyzed by real-time RT-PCR in naturally and experimentally infected pigs. Results suggested that A. phagocytophilum infection affected cytoskeleton rearrangement and increased both innate and adaptive immune responses by up regulation of interleukin 1 receptor accessory protein-like 1 (IL1RAPL1), T-cell receptor alpha chain (TCR-alpha), thrombospondin 4 (TSP-4) and Gap junction protein alpha 1 (GJA1) genes. Higher serum levels of IL-1 beta, IL-8 and TNF-alpha in infected pigs when compared to controls supported data obtained at the mRNA level. CONCLUSIONS These results suggested that pigs are susceptible to A. phagocytophilum but control infection, particularly through activation of innate immune responses, phagocytosis and autophagy. This fact may account for the low infection prevalence detected in pigs in some regions and thus their low or no impact as a reservoir host for this pathogen. These results advanced our understanding of the molecular mechanisms at the host-pathogen interface and suggested a role for newly reported genes in the protection of pigs against A. phagocytophilum.
Resumo:
A comprehensive user model, built by monitoring a user's current use of applications, can be an excellent starting point for building adaptive user-centred applications. The BaranC framework monitors all user interaction with a digital device (e.g. smartphone), and also collects all available context data (such as from sensors in the digital device itself, in a smart watch, or in smart appliances) in order to build a full model of user application behaviour. The model built from the collected data, called the UDI (User Digital Imprint), is further augmented by analysis services, for example, a service to produce activity profiles from smartphone sensor data. The enhanced UDI model can then be the basis for building an appropriate adaptive application that is user-centred as it is based on an individual user model. As BaranC supports continuous user monitoring, an application can be dynamically adaptive in real-time to the current context (e.g. time, location or activity). Furthermore, since BaranC is continuously augmenting the user model with more monitored data, over time the user model changes, and the adaptive application can adapt gradually over time to changing user behaviour patterns. BaranC has been implemented as a service-oriented framework where the collection of data for the UDI and all sharing of the UDI data are kept strictly under the user's control. In addition, being service-oriented allows (with the user's permission) its monitoring and analysis services to be easily used by 3rd parties in order to provide 3rd party adaptive assistant services. An example 3rd party service demonstrator, built on top of BaranC, proactively assists a user by dynamic predication, based on the current context, what apps and contacts the user is likely to need. BaranC introduces an innovative user-controlled unified service model of monitoring and use of personal digital activity data in order to provide adaptive user-centred applications. This aims to improve on the current situation where the diversity of adaptive applications results in a proliferation of applications monitoring and using personal data, resulting in a lack of clarity, a dispersal of data, and a diminution of user control.
Resumo:
The conjugate gradient is the most popular optimization method for solving large systems of linear equations. In a system identification problem, for example, where very large impulse response is involved, it is necessary to apply a particular strategy which diminishes the delay, while improving the convergence time. In this paper we propose a new scheme which combines frequency-domain adaptive filtering with a conjugate gradient technique in order to solve a high order multichannel adaptive filter, while being delayless and guaranteeing a very short convergence time.
Resumo:
At Mediterranean regions and particularly in southern Portugal, it is imperative to identify grape varieties more adapted to warm and dry climates in order to overcome future climatic changes. Two Vitis vinifera genotypes, Aragonez (syn. Tempranillo) and Trincadeira, were selected to assess their physiological responses to soil water stress. Vines were subjected to four irrigation regimes: irrigated during all phenological cycle, non-irrigated during all phenological cycle, non irrigated until veraison, irrigated after veraison. Predawn leaf water potential was much higher in Trincadeira than Aragonez in non- irrigated plants. This result is in accordance with its higher stomatal control efficiency in this variety (Trincadeira). Photosynthetic capacity (Amax at saturating light intensity) decreased due to stomatal and biochemical limitations under water stress. However, recovery capacity of leaf water status after irrigation was faster in Trincadeira. Yield and yield x Brix increased when irrigation occurred after veraison, particularly in Trincadeira. These results show that Trincadeira presents a drought adaptation than Aragonez. Ratio of variable to maximum fluorescence Fv/Fm and total leaf chlorophyll related with leaf water potential for both species. Reflectance Normalized Difference Vegetation Index (NDVI705), Red Edge Inflexion Point Index and Photochemical Reflectance Index were related with irrigation treatment. Relative water content and specific leaf area were similar between varieties. In conclusion, we suggested that there is variation among the genotypes and the main physiological parameters for variety selection, for drought, were leaf water potential, stomatal conductance and reflectance indexes.
Resumo:
This paper is about a PhD thesis and includes the study and analysis of the performance of an onshore wind energy conversion system. First, mathematical models of a variable speed wind turbine with pitch control are studied, followed by the study of different controller types such as integer-order controllers, fractional-order controllers, fuzzy logic controllers, adaptive controllers and predictive controllers and the study of a supervisor based on finite state machines is also studied. The controllers are included in the lower level of a hierarchical structure composed by two levels whose objective is to control the electric output power around the rated power. The supervisor included at the higher level is based on finite state machines whose objective is to analyze the operational states according to the wind speed. The studied mathematical models are integrated into computer simulations for the wind energy conversion system and the obtained numerical results allow for the performance assessment of the system connected to the electric grid. The wind energy conversion system is composed by a variable speed wind turbine, a mechanical transmission system described by a two mass drive train, a gearbox, a doubly fed induction generator rotor and by a two level converter.
Resumo:
The thesis work deals with topics that led to the development of innovative control-oriented models and control algorithms for modern gasoline engines. Knock in boosted spark ignition engines is the widest topic discussed in this document because it remains one of the most limiting factors for maximizing combustion efficiency in this kind of engine. First chapter is thus focused on knock and a wide literature review is proposed to summarize the preliminary knowledge that even represents the background and the reference for discussed activities. Most relevant results achieved during PhD course in the field of knock modelling and control are then presented, describing every control-oriented model that led to the development of an adaptive model-based combustion control system. The complete controller has been developed in the context of the collaboration with Ferrari GT and it allowed to completely redefine the knock intensity evaluation as well as the combustion phase control. The second chapter is focused on the activity related to a prototyping Port Water Injection system that has been developed and tested on a turbocharged spark ignition engine, within the collaboration with Magneti Marelli. Such system and the effects of injected water on the combustion process were then modeled in a 1-D simulation environment (GT Power). Third chapter shows the development and validation of a control-oriented model for the real-time calculation of exhaust gas temperature that represents another important limitation to the performance increase in modern boosted engines. Indeed, modelling of exhaust gas temperature and thermocouple behavior are themes that play a key role in the optimization of combustion and catalyst efficiency.
Resumo:
In this thesis, a thorough investigation on acoustic noise control systems for realistic automotive scenarios is presented. The thesis is organized in two parts dealing with the main topics treated: Active Noise Control (ANC) systems and Virtual Microphone Technique (VMT), respectively. The technology of ANC allows to increase the driver's/passenger's comfort and safety exploiting the principle of mitigating the disturbing acoustic noise by the superposition of a secondary sound wave of equal amplitude but opposite phase. Performance analyses of both FeedForwrd (FF) and FeedBack (FB) ANC systems, in experimental scenarios, are presented. Since, environmental vibration noises within a car cabin are time-varying, most of the ANC solutions are adaptive. However, in this work, an effective fixed FB ANC system is proposed. Various ANC schemes are considered and compared with each other. In order to find the best possible ANC configuration which optimizes the performance in terms of disturbing noise attenuation, a thorough research of \gls{KPI}, system parameters and experimental setups design, is carried out. In the second part of this thesis, VMT, based on the estimation of specific acoustic channels, is investigated with the aim of generating a quiet acoustic zone around a confined area, e.g., the driver's ears. Performance analysis and comparison of various estimation approaches is presented. Several measurement campaigns were performed in order to acquire a sufficient duration and number of microphone signals in a significant variety of driving scenarios and employed cars. To do this, different experimental setups were designed and their performance compared. Design guidelines are given to obtain good trade-off between accuracy performance and equipment costs. Finally, a preliminary analysis with an innovative approach based on Neural Networks (NNs) to improve the current state of the art in microphone virtualization is proposed.
Resumo:
In pursuit of aligning with the European Union's ambitious target of achieving a carbon-neutral economy by 2050, researchers, vehicle manufacturers, and original equipment manufacturers have been at the forefront of exploring cutting-edge technologies for internal combustion engines. The introduction of these technologies has significantly increased the effort required to calibrate the models implemented in the engine control units. Consequently the development of tools that reduce costs and the time required during the experimental phases, has become imperative. Additionally, to comply with ever-stricter limits on 〖"CO" 〗_"2" emissions, it is crucial to develop advanced control systems that enhance traditional engine management systems in order to reduce fuel consumption. Furthermore, the introduction of new homologation cycles, such as the real driving emissions cycle, compels manufacturers to bridge the gap between engine operation in laboratory tests and real-world conditions. Within this context, this thesis showcases the performance and cost benefits achievable through the implementation of an auto-adaptive closed-loop control system, leveraging in-cylinder pressure sensors in a heavy-duty diesel engine designed for mining applications. Additionally, the thesis explores the promising prospect of real-time self-adaptive machine learning models, particularly neural networks, to develop an automatic system, using in-cylinder pressure sensors for the precise calibration of the target combustion phase and optimal spark advance in a spark-ignition engines. To facilitate the application of these combustion process feedback-based algorithms in production applications, the thesis discusses the results obtained from the development of a cost-effective sensor for indirect cylinder pressure measurement. Finally, to ensure the quality control of the proposed affordable sensor, the thesis provides a comprehensive account of the design and validation process for a piezoelectric washer test system.
Resumo:
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.
Resumo:
Paraquat is a fast acting nonselective contact herbicide that is extensively used worldwide. However, the aqueous solubility and soil sorption of this compound can cause problems of toxicity in nontarget organisms. This work investigates the preparation and characterization of nanoparticles composed of chitosan and sodium tripolyphosphate (TPP) to produce an efficient herbicidal formulation that was less toxic and could be used for safer control of weeds in agriculture. The toxicities of the formulations were evaluated using cell culture viability assays and the Allium cepa chromosome aberration test. The herbicidal activity was investigated in cultivations of maize (Zea mays) and mustard (Brassica sp.), and soil sorption of the nanoencapsulated herbicide was measured. The efficiency association of paraquat with the nanoparticles was 62.6 ± 0.7%. Encapsulation of the herbicide resulted in changes in its diffusion and release as well as its sorption by soil. Cytotoxicity and genotoxicity assays showed that the nanoencapsulated herbicide was less toxic than the pure compound, indicating its potential to control weeds while at the same time reducing environmental impacts. Measurements of herbicidal activity showed that the effectiveness of paraquat was preserved after encapsulation. It was concluded that the encapsulation of paraquat in nanoparticles can provide a useful means of reducing adverse impacts on human health and the environment, and that the formulation therefore has potential for use in agriculture.
Resumo:
The maintenance of glucose homeostasis is complex and involves, besides the secretion and action of insulin and glucagon, a hormonal and neural mechanism, regulating the rate of gastric emptying. This mechanism depends on extrinsic and intrinsic factors. Glucagon-like peptide-1 secretion regulates the speed of gastric emptying, contributing to the control of postprandial glycemia. The pharmacodynamic characteristics of various agents of this class can explain the effects more relevant in fasting or postprandial glucose, and can thus guide the individualized treatment, according to the clinical and pathophysiological features of each patient.