493 resultados para Konstantin Melnikov


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was supported by the Brazilian agencies FAPESP and CNPq. MSB also acknowledges the Engineering and Physical Sciences Research Council grant Ref. EP/I032606/1. GID thanks Felipe A. C. Pereira for fruitful discussions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SnRK1 protein kinase balances cellular energy levels in accordance with extracellular conditions and is thereby key for plant stress tolerance. In addition, SnRK1 has been implicated in numerous growth and developmental processes from seed filling and maturation to flowering and senescence. Despite its importance, the mechanisms that regulate SnRK1 activity are poorly understood. Here, we demonstrate that the SnRK1 complex is SUMOylated on multiple subunits and identify SIZ1 as the E3 Small Ubiquitin-like Modifier (SUMO) ligase responsible for this modification. We further show that SnRK1 is ubiquitinated in a SIZ1-dependent manner, causing its degradation through the proteasome. In consequence, SnRK1 degradation is deficient in siz1-2 mutants, leading to its accumulation and hyperactivation of SnRK1 signaling. Finally, SnRK1 degradation is strictly dependent on its activity, as inactive SnRK1 variants are aberrantly stable but recover normal degradation when expressed as SUMO mimetics. Altogether, our data suggest that active SnRK1 triggers its own SUMOylation and degradation, establishing a negative feedback loop that attenuates SnRK1 signaling and prevents detrimental hyperactivation of stress responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present sedimentary geochemical data and in situ benthic flux measurements of dissolved inorganic nitrogen (DIN: NO3-, NO2-, NH4+) and oxygen (O2) from 7 sites with variable sand content along 18°N offshore Mauritania (NW Africa). Bottom water O2 concentrations at the shallowest station were hypoxic (42 µM) and increased to 125 µM at the deepest site (1113 m). Total oxygen uptake rates were highest on the shelf (-10.3 mmol O2 /m2 d) and decreased quasi-exponentially with water depth to -3.2 mmol O2 /m2 d. Average denitrification rates estimated from a flux balance decreased with water depth from 2.2 to 0.2 mmol N /m2 d. Overall, the sediments acted as net sink for DIN. Observed increases in delta 15NNO3 and delta 18ONO3 in the benthic chamber deployed on the shelf, characterized by muddy sand, were used to calculate apparent benthic nitrate fractionation factors of 8.0 pro mille (15epsilon app) and 14.1 pro mille (18epsilon app). Measurements of delta 15NNO2 further demonstrated that the sediments acted as a source of 15N depleted NO2-. These observations were analyzed using an isotope box model that considered denitrification and nitrification of NH4+ and NO2-. The principal findings were that (i) net benthic 14N/15N fractionation (epsilon DEN) was 12.9 ± 1.7pro mille, (ii) inverse fractionation during nitrite oxidation leads to an efflux of isotopically light NO2- (-22 ± 1.9 pro mille), and (iii) direct coupling between nitrification and denitrification in the sediment is negligible. Previously reported epsilon DEN for fine-grained sediments are much lower (4-8 pro mille). We speculate that high benthic nitrate fractionation is driven by a combination of enhanced porewater-seawater exchange in permeable sediments and the hypoxic, high productivity environment. Although not without uncertainties, the results presented could have important implications for understanding the current state of the marine N cycle.