599 resultados para Kernphysik, QCD, Seequark, Paritätsverletzung, Bleifluorid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ground state masses and binding energies of the nucleon, lambda0, lambdac+ , lambdab0 are studied within a constituent quark QCD-inspired light-front model. The light-front Faddeev equations for the Qqq composite spin 1/2 baryons, are derived and solved numerically. The experimental data for the masses are qualitatively described by a flavor independent effective interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exchange of gluons between heavy quarks produced in e+e- interactions results in an enhancement of their production near threshold. We study QCD threshold effects in gammagamma collisions. The results are relevant to heavy quark production by beamstrahlung and laser backscattering in future linear collider experiments. Detailed predictions for top-, bottom-, and charm-quark production are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sharp transitions are perhaps absent in QCD, so that one looks for physical quantities which may reflect the phase change. One such quantity is the sound velocity which was shown in lattice theory to become zero at the transition point for pure glue. We show that even in a simple bag model the sound velocity goes to zero at temperature T = T(v) not-equal 0 and that the numerical value of this T(v) depends on the nature of the meson. The average thermal energy of mesons goes linearly with T near T(v), with much smaller slope for the pion. The T(v) - s can be connected with the Boltzmann temperatures obtained from transverse momentum spectrum of these mesons in heavy-ion collision at mid-rapidity. It would be interesting to check the presence of different T(v) - s in present day finite T lattice theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1/N(c) expansion in QCD (with N(c) the number of colors) suggests using a potential from meson sector (e.g., Richardson) for baryons. For light quarks a sigma-field has to be introduced to ensure chiral symmetry breaking (chi-SB). It is found that nuclear matter properties can be used to pin down the chi-SB modeling. All masses, M(N), m-sigma, m-omega, are found to scale with density. The equations are solved self-consistently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently proposed a QCD Pomeron described by the exchange of two nonperturbative gluons characterized by a dynamically generated gluon mass. It is shown here that data on elastic scattering, exclusive rho production in deep inelastic scattering, and the J/psi-nucleon total cross section can be successfully described in terms of a single gluon mass m(g) congruent-to 0.37 GeV. We observe that the total cross sections of hadrons with small radii, such as J/psi, have a marked dependence on the effective gluon mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work the independent particle model formulation is studied as a mean-field approximation of gauge theories using the path integral approach in the framework of quantum electrodynamics in 1 + 1 dimensions. It is shown how a mean-field approximation scheme can be applied to fit an effective potential to an independent particle model, building a straightforward relation between the model and the associated gauge field theory. An example is made considering the problem of massive Dirac fermions on a line, the so called massive Schwinger model. An interesting result is found, indicating a behaviour of screening of the charges in the relativistic limit of strong coupling. A forthcoming application of the method developed to confining potentials in independent quark models for QCD is in view and is briefly discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the QCD pomeron model proposed by Landshoff and Nachtmann to compute the differential and the total cross-sections for pp scattering in order to discuss a QCD-based approach to the proton form factor. This model is quite dependent on the experimental electromagnetic form factor, and it is not totally clear why this form factor gives good results even at moderate transferred momentum. We exchange the electromagnetic form factor by the asymptotic QCD proton form factor determined by Brodsky and Lepage (BL) plus a prescription for its low energy behavior dictated by the existence of a dynamically generated gluon mass. We fit the data with this QCD inspired form factor and a value for the dynamical gluon mass consistent with the ones determined in the literature. Our results also provide a determination of the proton wave function at the origin, which appears in the BL form factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a form of the effective potential for composite operators with a variational approach we show that it is possible to get different directions of the chiral phase transition in QCD. Which one occurs depends on the way the Schwinger-Dyson equation for the fermion self-energy is used in the 2-loop term of the effective potential. We must choose the 2-loop term which agrees with phenomenology in each form of the effective potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study an exactly solvable two-dimensional model which mimics the basic features of the standard model. This model combines chiral coupling with an infrared behavior which resembles low energy QCD. This is done by adding a Podolsky higher-order derivative term in the gauge field to the Lagrangian of the usual chiral Schwinger model. We adopt a finite temperature regularization procedure in order to calculate the non-trivial fermionic Jacobian and obtain the photon and fermion propagators, first at zero temperature and then at finite temperature in the imaginary and real time formalisms. Both singular and non-singular cases, corresponding to the choice of the regularization parameter, are treated. In the nonsingular case there is a tachyonic mode as usual in a higher order derivative theory, however in the singular case there is no tachyonic excitation in the spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A potential previously utilized in the quark sector is extended to the gluon one. The short-range gluon-gluon interaction potential using QCD is calculated. To simulate the confinement a confining potential and an effective mass for the gluon are introduced. © 1989 Società Italiana di Fisica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hadronic transitions rates in the heavy quarkonium systems are calculated within the framework of the QCD multipole expansion. The spectrum of glueballs consisting of two massive gluons, obtained by the use of the potential model, is adopted as a suitable description of the intermediate states. Comparisons with the quark confining string model (QCS) and the bag model are made. © 1990 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review two-dimensional QCD. We start with the field theory aspects since 't Hooft's 1/N expansion, arriving at the non-Abelian bosonization formula, coset construction and gauge-fixing procedure. Then we consider the string interpretation, phase structure and the collective coordinate approach. Adjoint matter is coupled to the theory, and the Landau-Ginzburg generalization is analysed. We end with considerations concerning higher algebras, integrability, constraint structure, and the relation of high-energy scattering of hadrons with two-dimensional (integrable) field theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate higher grading integrable generalizations of the affine Toda systems, where the flat connections defining the models take values in eigensubspaces of an integral gradation of an affine Kac-Moody algebra, with grades varying from l to -l (l > 1). The corresponding target space possesses nontrivial vacua and soliton configurations, which can be interpreted as particles of the theory, on the same footing as those associated to fundamental fields. The models can also be formulated by a hamiltonian reduction procedure from the so-called two-loop WZNW models. We construct the general solution and show the classes corresponding to the solitons. Some of the particles and solitons become massive when the conformal symmetry is spontaneously broken by a mechanism with an intriguing topological character and leading to a very simple mass formula. The massive fields associated to nonzero grade generators obey field equations of the Dirac type and may be regarded as matter fields. A special class of models is remarkable. These theories possess a U(1 ) Noether current, which, after a special gauge fixing of the conformal symmetry, is proportional to a topological current. This leads to the confinement of the matter field inside the solitons, which can be regarded as a one-dimensional bag model for QCD. These models are also relevant to the study of electron self-localization in (quasi-)one-dimensional electron-phonon systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the chiral symmetry breaking in QCD, using an effective potential for composite operators, with infrared finite gluon propagators that have been found by numerical calculation of the Schwinger-Dyson equations as well as in lattice simulations. The existence of a gluon propagator that is finite at k2 = 0 modifies substantially the transition between the phases with and without chiral symmetry.