892 resultados para Kappa-rational tuple of conjugacy classes
Resumo:
In this study, the physicochemical properties and preliminary in vivo clinical performance of formulations containing hydroxyethylcellulose (HEC; 3, 5, 10% w/w, poly(vinylpyrrolidone) (PVP; 3, 5% w/w), polycarbophil (PC; 1, 3, 5% w/w), and flurbiprofen (5% w/w) were examined. Flurbiprofen release into PBS pH 7.4 was performed at 37 degrees C. The mechanical properties (hardness, compressibility, adhesiveness, initial stress) and syringeability of formulations were determined using a texture analyzer in texture profile analysis (TPA) and compression modes, respectively. In general, the time required for release of 10 and 30% of the original mass of flurbiprofen (t(10%), t(30%)) increased as the concentration of each polymeric component increased. However, in the presence of either 5 or 10% HEC and 5% PC, increased PVP concentration decreased both t(10%), t(30%) due to excessive swelling land disintegration) of these formulations. Increased concentrations of HEC, PVP, and PC significantly increased formulation hardness, compressibility, work of syringe expression, and initial stress due to the effects of these polymers on formulation viscoelasticity. Similarly, increased concentrations of PC (primarily), HEC, and PVP increased formulation adhesiveness-due to the known bioadhesive properties of these polymers. Clinical efficacies of formulations containing 3% HEC, 3% PVP, 3% PC, and either 0% (control) of 5% (test) flurbiprofen, selected to offer optimal drug release and mechanical properties, were evaluated and clinically compared in an experimental gingivitis model. The test (flurbiprofen-containing) formulation significantly reduced gingival inflammation, as evaluated using the gingival index, and the gingival crevicular fluid volume, whereas, these clinical parameters were generally increased in volunteers who had received the control formulation. There were no observed differences in the plaque indices of the two subject groups, confirming that the observed differences in gingival inflammation could not be accredited to differences in plaque accummulation. This study has shown both the applicability of the in vitro methods used, particularly TPA, for the rational selection of formulations for clinical evaluation and, additionally, the clinical benefits of the topical application of a bioadhesive semisolid flurbiprofen-containing formulation for the treatment of experimental gingivitis.
Resumo:
The actions of known platyhelminth FaRPs on the contractility of whole-worm preparations of the monogenean, Diclidophora merlangi have been examined in vitro for the first time. All of the peptides tested had excitatory effects on the motor activity of the worm. The order of potency for the peptides tested was: YIRFamide > GYIRFamide = RYIRFamide > GNFFRFamide = FLRFamide. However, although YIRFamide was more potent than GYIRFamide, the latter was the most efficacious on each of the motility parameters (tension, contraction amplitude and contraction frequency) examined at concentrations greater than or equal to 0.1 mu M. Serotonin, which stimulates contractility in the worm was used as a positive control. The excitatory activity of turbellarian and cestode neuropeptides on a monogenean indicates at least some structural similarities in the neuropeptide receptors of these classes of flatworm.
Resumo:
Free fatty acid receptor 2 (FFA2; GPR43) is a G protein-coupled seven-transmembrane receptor for short-chain fatty acids (SCFAs) that is implicated in inflammatory and metabolic disorders. The SCFA propionate has close to optimal ligand efficiency for FFA2 and can hence be considered as highly potent given its size. Propionate, however, does not discriminate between FFA2 and the closely related receptor FFA3 (GPR41). To identify FFA2-selective ligands and understand the molecular basis for FFA2 selectivity, a targeted library of small carboxylic acids was examined using holistic, label-free dynamic mass redistribution technology for primary screening and the receptor-proximal G protein [S-35] guanosine 5'-(3-O-thio) triphosphate activation, inositol phosphate, and cAMP accumulation assays for hit confirmation. Structure-activity relationship analysis allowed formulation of a general rule to predict selectivity for small carboxylic acids at the orthosteric binding site where ligands with substituted sp(3)-hybridized alpha-carbons preferentially activate FFA3, whereas ligands with sp(2)- or sp-hybridized alpha-carbons prefer FFA2. The orthosteric binding mode was verified by site-directed mutagenesis: replacement of orthosteric site arginine residues by alanine in FFA2 prevented ligand binding, and molecular modeling predicted the detailed mode of binding. Based on this, selective mutation of three residues to their non-conserved counterparts in FFA3 was sufficient to transfer FFA3 selectivity to FFA2. Thus, selective activation of FFA2 via the orthosteric site is achievable with rather small ligands, a finding with significant implications for the rational design of therapeutic compounds selectively targeting the SCFA receptors.
Resumo:
G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.
Resumo:
A tuple $(T_1,\dots,T_n)$ of continuous linear operators on a topological vector space $X$ is called hypercyclic if there is $x\in X$ such that the the orbit of $x$ under the action of the semigroup generated by $T_1,\dots,T_n$ is dense in $X$. This concept was introduced by N.~Feldman, who have raised 7 questions on hypercyclic tuples. We answer those 4 of them, which can be dealt with on the level of operators on finite dimensional spaces. In
particular, we prove that the minimal cardinality of a hypercyclic tuple of operators on $\C^n$ (respectively, on $\R^n$) is $n+1$ (respectively, $\frac n2+\frac{5+(-1)^n}{4}$), that there are non-diagonalizable tuples of operators on $\R^2$ which possess an orbit being neither dense nor nowhere dense and construct a hypercyclic 6-tuple of operators on $\C^3$ such that every operator commuting with each member of the tuple is non-cyclic.
Resumo:
Substantial increases in participation rates at secondary and third level in recent years have often been assumed to be associated with increased equality of opportunity. However, there is little evidence from elsewhere that expansion per se, except when it takes the form of saturation of the demand from higher classes, leads to a reduction in class inequalities. In exploring the factors that contribute to trends over time, or to a distinctive position in comparison with other countries, we have drawn on the recent literature to argue that the crucial factors are those which affect decisions to continue in education. We have also operated on the assumption that students and their parents rationally consider the costs and benefits associated with educational choices. The most recent evidence relating to the adult population provides no support for the existence of any trend towards equality of educational opportunity. It is, rather consistent with the class reproduction perspective that stresses the ability of privileged classes to maintain their advantages.
Resumo:
Dye-sensitized solar cells have attracted intense research attention owing to their ease of fabrication, cost-effectiveness and high efficiency in converting solar energy. Noble platinum is generally used as catalytic counter electrode for redox mediators in electrolyte solution. Unfortunately, platinum is expensive and non-sustainable for long-term applications. Therefore, researchers are facing with the challenge of developing low-cost and earth-abundant alternatives. So far, rational screening of non-platinum counter electrodes has been hamstrung by the lack of understanding about the electrocatalytic process of redox mediators on various counter electrodes. Here, using first-principle quantum chemical calculations, we studied the electrocatalytic process of redox mediators and predicted electrocatalytic activity of potential semiconductor counter electrodes. On the basis of theoretical predictions, we successfully used rust (alpha-Fe2O3) as a new counter electrode catalyst, which demonstrates promising electrocatalytic activity towards triiodide reduction at a rate comparable to platinum.
Resumo:
Atmospheric pressure non-thermal plasma (APNTP) has been gaining increasing interest as a new alternative antibacterial approach. Although this approach has demonstrated promising antibacterial activity, its exact mechanism of action remains unclear. Mechanistic elucidation of the antimicrobial activity will facilitate development and rational optimisation of this approach for potential medical applications. In this study, the antibacterial efficacy of an in-house-built APNTP jet was evaluated alongside an investigation of the interactions between APNTP and major cellular components in order to identify the potential cellular targets involved in plasma-mediated bacterial destruction mechanisms. The investigated plasma jet exhibited excellent, rapid antibacterial activity against a selected panel of clinically significant bacterial species including Bacillus cereus, meticillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa, all of which were completely inactivated within 2 min of plasma exposure. Plasma-mediated damaging effects were observed, to varying degrees, on all of the investigated cellular components including DNA, a model protein enzyme, and lipid membrane integrity and permeability. The antibacterial efficacy of APNTP appears to involve a multiple-target mechanism, which potentially reduces the likelihood of emergence of microbial resistance towards this promising antimicrobial approach. However, cellular membrane damage and resulting permeability perturbation was found to be the most likely rate-determining step in this mechanism. Crown Copyright © 2013.
Resumo:
Acoustic supersolitons arise when a plasma model is able to support three consecutive local extrema of the Sagdeev pseudopotential between the undisturbed conditions and an accessible root. This leads to a characteristic electric field signature, where a simple bipolar shape is enriched by subsidiary maxima. Large-amplitude nonlinear acoustic modes are investigated, using a pseudopotential approach, for plasmas containing two-temperature electrons having Boltzmann or kappa distributions, in the presence of cold fluid ions. The existence domains for positive supersolitons are derived in a methodological way, both for structure velocities and amplitudes, in terms of plasma compositional parameters. In addition, typical pseudopotentials, soliton, and electric field profiles have been given to illustrate that positive supersolitons can be found in the whole range of electron distributions from Maxwellian to a very hard nonthermal spectrum in kappa. However, it is found that the parameter ranges that support supersolitons vary significantly over the wide range of kappa considered. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818888]
Resumo:
Purpose – Under investigation is Prosecco wine, a sparkling white wine from North-East Italy.
Information collection on consumer perceptions is particularly relevant when developing market
strategies for wine, especially so when local production and certification of origin play an important
role in the wine market of a given district, as in the case at hand. Investigating and characterizing the
structure of preference heterogeneity become crucial steps in every successful marketing strategy. The
purpose of this paper is to investigate the sources of systematic differences in consumer preferences.
Design/methodology/approach – The paper explores the effect of inclusion of answers to
attitudinal questions in a latent class regression model of stated willingness to pay (WTP) for this
specialty wine. These additional variables were included in the membership equations to investigate
whether they could be of help in the identification of latent classes. The individual specific WTPs from
the sampled respondents were then derived from the best fitting model and examined for consistency.
Findings – The use of answers to attitudinal question in the latent class regression model is found to
improve model fit, thereby helping in the identification of latent classes. The best performing model
obtained makes use of both attitudinal scores and socio-economic covariates identifying five latent
classes. A reasonable pattern of differences in WTP for Prosecco between CDO and TGI types were
derived from this model.
Originality/value – The approach appears informative and promising: attitudes emerge as
important ancillary indicators of taste differences for specialty wines. This might be of interest per se
and of practical use in market segmentation. If future research shows that these variables can be of use
in other contexts, it is quite possible that more attitudinal questions will be routinely incorporated in
structural latent class hedonic models.
Resumo:
Amphibian skin secretions contain a broad spectrum of biologically active compounds, particularly antimicrobial peptides, which are considered to constitute a first line of defence against bacterial infection. Here we describe the identification of two prototype peptides representing a novel structural class of antimicrobial peptide from the skin secretion of the oriental broad-folded frog, Hylarana latouchii. Named hylaranin-L1 (GVLSAFKNALPGIMKIIVamide) and hylaranin-L2 (GVLSVIKNALPGIMRFIAamide), both peptides consist of 18 amino acid residues, are C-terminally amidated and are of unique primary structures. Their primary structures were initially deduced by MS/MS fragmentation sequencing from reverse-phase HPLC fractions of skin secretion that demonstrated antimicrobial activity. Subsequently, their precursor-encoding cDNAs were cloned from a skin secretion-derived cDNA library and their primary structures were confirmed unequivocally. Synthetic replicates of both peptides exhibited broad-spectrum antimicrobial activity with mean inhibitory concentrations (MICs) of 34 µM against Gram-negative Escherichia coli, 4.3 µM against Gram-positive Staphylococcus aureus and 4–9 µM against the yeast, Candida albicans. Both peptides exhibited little haemolytic activity (<6 %) at the MICs for S. aureus and C. albicans. Amphibian skin secretions thus continue to provide novel antimicrobial peptide structures that may prove to be lead compounds in the design of new classes of anti-infection therapeutics.
Resumo:
The decarbonisation of energy systems draw a new set of stakeholders into debates over energy generation, engage a complex set of social, political, economic and environmental processes and impact at a wide range of geographical scales, including local landscape changes, national energy markets and regional infrastructure investment. This paper focusses on a particular geographic scale, that of the regions/nations of the UK (Scotland, Wales, Northern Ireland), who have been operating under devolved arrangements since the late 1990s, coinciding with the mass deployment of wind energy. The devolved administrations of the UK possess an asymmetrical set of competencies over energy policy, yet also host the majority of the UK wind resource. This context provides a useful way to consider the different ways in which geographies of "territory" are reflected in energy governance, such through techno-rational assessments of demand or infrastructure investment, but also through new spatially-defined institutions that seek to develop their own energy future, using limited regulatory competencies. By focussing on the way the devolved administrations have used their responsibilities for planning over the last decade this paper will assess the way in which the spatial politics of wind energy is giving rise to renewed forms of territorialisation of natural resources. In so doing, we aim to contribute to clarifying the questions raised by Hodson and Marvin (2013) on whether low carbon futures will reinforce or challenge dominant ways of organising relationships between the nation-state, regions, energy systems and the environment.
Resumo:
Residues of veterinary medicines are a food safety issue regulated by European legislation. The occurrence of animal diseases necessitating application of veterinary medicines is significantly affected by global and local climate changes. This review assesses potential impacts of climate change on residues in food produced on the island of Ireland. Use of various classes of veterinary drugs in light of predicted local climate change is reviewed with particular emphasis on anthelmintic drugs and consideration is given to residues accumulating in the environment. Veterinary medicine use is predicted to increase as disease burdens increase due to varied climate effects. Locally relevant mitigation and adaptation strategies are suggested to ensure climate change does not adversely affect food safety via increasing drug residues.
Resumo:
Feleucins-BV1 and -BV2 are recently-described prototypes of a novel antimicrobial nonapeptide (AMP) family identified in the skin secretion of the bombinid toad, Bombina variegata. They are encoded on different precursors that also encode a novel bombinin. Here we describe the identification of feleucin-BO1 (FLGLLGSLLamide) which is co-encoded with a different novel bombinin, named feleucin precursor-associated bombinin (FPA-bombinin-BO), from the skin secretion of Bombina orientalis. Synthetic feleucin-BO1 displayed activity against a reference Gram-positive bacterium. Staphylococcus aureus (MIC 34 μM) but was inactive (> 250 μM) against the Gram-negative bacterium, Escherichia coli, and the yeast, Candida albicans. This pattern of activity was similar to that of the prototypes. Design and synthesis of a cationicity-enhanced analogue, feleucin-K3 (F-K3), in which the amino acid residues at positions 3 (G), 6 (G) and 7 (S) of feleucin-BO1 were substituted with Lys (K) residues, resulted in a peptide with significantly-enhanced potency and spectrum of activity. The MICs of F-K3 against the reference microorganisms were 7 μM (S. aureus), 14 μM (E. coli) and 7 μM (C. albicans). These data indicate that the skin secretions of amphibians can continue to provide novel peptide templates for the rational design of analogues with possible therapeutic utility.
Resumo:
The photophysics of the green fluorescent protein is governed by the electronic structure of the chromophore at the heart of its β-barrel protein structure. We present the first two-color, resonance-enhanced, multiphoton ionization spectrum of the isolated neutral chromophore in vacuo with supporting electronic structure calculations. We find the absorption maximum to be 3.65 ± 0.05 eV (340 ± 5 nm), which is blue-shifted by 0.5 eV (55 nm) from the absorption maximum of the protein in its neutral form. Our results show that interactions between the chromophore and the protein have a significant influence on the electronic structure of the neutral chromophore during photoabsorption and provide a benchmark for the rational design of novel chromophores as fluorescent markers or photomanipulators.