918 resultados para KOOP HARDNESS
Resumo:
A series of molecular dynamics simulations of simple liquid binary mixtures of soft spheres with disparate-mass particles were carried out to investigate the origin of the marked differences between the dynamic structure factors of some liquid binary mixtures such as the Li0.7Mg0.3 and Li0.8Pb0.2 alloys. It is shown that the facility for observing peaks associated with fast-propagating modes in the partial Li-Li dynamic structure factor of Li0.8Pb0.2 should be mainly attributed to the structure of this alloy, which is characterized by an incipient ABAB ordering as found in molten salts. The longitudinal dispersion relations at intermediate wave vectors obtained from the longitudinal current spectra are very similar for the two alloys and reflect the existence of both fast-and slow-propagating modes of kinetic character associated with light and heavy particles, respectively. The influence of the hardness of the repulsive potential cores as well as the composition of the mixture on the longitudinal collective modes is also discussed.
Resumo:
Tungsten carbide used in snowplow blades was studied from three manufacturers. The carbides were measured for common industry properties including specific gravity and hardness. In addition, an abrasion resistance was performed. There was no significant difference found in abrasion resistance between the Kenametal and the Valk carbides. The Bucyrus carbides showed improved abrasion resistance, but were outside industry specifications for specific gravity.
Resumo:
Geophysical techniques can help to bridge the inherent gap with regard to spatial resolution and the range of coverage that plagues classical hydrological methods. This has lead to the emergence of the new and rapidly growing field of hydrogeophysics. Given the differing sensitivities of various geophysical techniques to hydrologically relevant parameters and their inherent trade-off between resolution and range the fundamental usefulness of multi-method hydrogeophysical surveys for reducing uncertainties in data analysis and interpretation is widely accepted. A major challenge arising from such endeavors is the quantitative integration of the resulting vast and diverse database in order to obtain a unified model of the probed subsurface region that is internally consistent with all available data. To address this problem, we have developed a strategy towards hydrogeophysical data integration based on Monte-Carlo-type conditional stochastic simulation that we consider to be particularly suitable for local-scale studies characterized by high-resolution and high-quality datasets. Monte-Carlo-based optimization techniques are flexible and versatile, allow for accounting for a wide variety of data and constraints of differing resolution and hardness and thus have the potential of providing, in a geostatistical sense, highly detailed and realistic models of the pertinent target parameter distributions. Compared to more conventional approaches of this kind, our approach provides significant advancements in the way that the larger-scale deterministic information resolved by the hydrogeophysical data can be accounted for, which represents an inherently problematic, and as of yet unresolved, aspect of Monte-Carlo-type conditional simulation techniques. We present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on pertinent synthetic data and then applied to corresponding field data collected at the Boise Hydrogeophysical Research Site near Boise, Idaho, USA.
Resumo:
The effects of combined pressure/temperature treatments (200, 400 and 600 MPa, at 20 and 40 °C) on the physical and nutritional properties of swede roots (Brassica napus var. napobrassica) were assessed. Changes induced by high pressure processing (HPP) on the original properties of swede samples were compared with those produced by thermal treatment (blanching). All studied treatments altered the physical properties of swede, resulting in a loss of hardness and water binding capacity. The strongest alteration of texture was observed after HPP at 400 MPa, while 600 MPa was the treatment that better preserved the texture properties of swede. Blanching caused less total colour changes (ΔE) than HPP. Antioxidant properties of swede were measured as total antioxidant capacity, ascorbic acid and total phenol content. All treatments caused a loss of antioxidant capacity, which was less pronounced after HPP at 600 MPa and 20 °C and blanching. Four glucosinolates were detected in swede roots, glucoraphanin, progoitrin, glucobrassicanapin and glucobrassicin. Glucobrassicanapin and glucobrassicin contents were reduced with all studied treatments. Progoitrin content was not affected by blanching and HPP at 200 MPa. HPP at higher pressure levels (400 and 600 MPa), though, induced an increase of progoitrin levels. The results indicated that blanching and HPP at 600 MPa and 20 °C were the treatments that better preserved the original quality properties of swede.
Resumo:
The objective of this work was to evaluate the effect of pond management on fish feed, growth, yield, survival, and water and effluent quality, during tambaqui (Colossoma macropomum) juvenile production. Fish were distributed in nine 600 m² earthen ponds, at a density of 8 fish per m²; the rearing period was 60 days. Three different pond management were applied: limed and fertilized (LimFer), limed (Lim), and natural (Nat). Fish were fed with a commercial ration containing 34% crude protein three times daily. There were no significant differences in fish growth or yield. Three main items found in tambaqui stomach were insect, zooplankton and ration, without a significant difference among treatments in proportion. Alkalinity, hardness, and CO2 were greater in LimFer and Lim ponds. Chlorophyll a, transparency, ammonia, nitrite, temperature, and dissolved oxygen of pond water were not significantly different among treatments. Biochemical oxygen demand, total phosphorus, orthophosphate, ammonia, and nitrite were significantly greater in effluents from LimFer ponds. Pond fertilization should be avoided, because growth and yield were similar among the three pond management systems tested; besides, it produces a more impacting effluent.
Resumo:
A role for gut hormone in bone physiology has been suspected. We evidenced alterations of microstructural morphology (trabecular and cortical) and bone strength (both at the whole-bone - and tissue-level) in double incretin receptor knock-out (DIRKO) mice as compared to wild-type littermates. These results support a role for gut hormones in bone physiology. INTRODUCTION: The two incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), have been shown to control bone remodeling and strength. However, lessons from single incretin receptor knock-out mice highlighted a compensatory mechanism induced by elevated sensitivity to the other gut hormone. As such, it is unclear whether the bone alterations observed in GIP or GLP-1 receptor deficient animals resulted from the lack of a functional gut hormone receptor, or by higher sensitivity for the other gut hormone. The aims of the present study were to investigate the bone microstructural morphology, as well as bone tissue properties, in double incretin receptor knock-out (DIRKO) mice. METHODS: Twenty-six-week-old DIRKO mice were age- and sex-matched with wild-type (WT) littermates. Bone microstructural morphology was assessed at the femur by microCT and quantitative X-ray imaging, while tissue properties were investigated by quantitative backscattered electron imaging and Fourier-transformed infrared microscopy. Bone mechanical response was assessed at the whole-bone- and tissue-level by 3-point bending and nanoindentation, respectively. RESULTS: As compared to WT animals, DIRKO mice presented significant augmentations in trabecular bone mass and trabecular number whereas bone outer diameter, cortical thickness, and cortical area were reduced. At the whole-bone-level, yield stress, ultimate stress, and post-yield work to fracture were significantly reduced in DIRKO animals. At the tissue-level, only collagen maturity was reduced by 9 % in DIRKO mice leading to reductions in maximum load, hardness, and dissipated energy. CONCLUSIONS: This study demonstrated the critical role of gut hormones in controlling bone microstructural morphology and tissue properties.
Resumo:
Combinatorial optimization involves finding an optimal solution in a finite set of options; many everyday life problems are of this kind. However, the number of options grows exponentially with the size of the problem, such that an exhaustive search for the best solution is practically infeasible beyond a certain problem size. When efficient algorithms are not available, a practical approach to obtain an approximate solution to the problem at hand, is to start with an educated guess and gradually refine it until we have a good-enough solution. Roughly speaking, this is how local search heuristics work. These stochastic algorithms navigate the problem search space by iteratively turning the current solution into new candidate solutions, guiding the search towards better solutions. The search performance, therefore, depends on structural aspects of the search space, which in turn depend on the move operator being used to modify solutions. A common way to characterize the search space of a problem is through the study of its fitness landscape, a mathematical object comprising the space of all possible solutions, their value with respect to the optimization objective, and a relationship of neighborhood defined by the move operator. The landscape metaphor is used to explain the search dynamics as a sort of potential function. The concept is indeed similar to that of potential energy surfaces in physical chemistry. Borrowing ideas from that field, we propose to extend to combinatorial landscapes the notion of the inherent network formed by energy minima in energy landscapes. In our case, energy minima are the local optima of the combinatorial problem, and we explore several definitions for the network edges. At first, we perform an exhaustive sampling of local optima basins of attraction, and define weighted transitions between basins by accounting for all the possible ways of crossing the basins frontier via one random move. Then, we reduce the computational burden by only counting the chances of escaping a given basin via random kick moves that start at the local optimum. Finally, we approximate network edges from the search trajectory of simple search heuristics, mining the frequency and inter-arrival time with which the heuristic visits local optima. Through these methodologies, we build a weighted directed graph that provides a synthetic view of the whole landscape, and that we can characterize using the tools of complex networks science. We argue that the network characterization can advance our understanding of the structural and dynamical properties of hard combinatorial landscapes. We apply our approach to prototypical problems such as the Quadratic Assignment Problem, the NK model of rugged landscapes, and the Permutation Flow-shop Scheduling Problem. We show that some network metrics can differentiate problem classes, correlate with problem non-linearity, and predict problem hardness as measured from the performances of trajectory-based local search heuristics.
Resumo:
Diplomityön tavoitteena oli selvittää mangaaniseosteisen LDX2101 duplex-teräksen ja LDX2101 hitsauslisäaineiden hitsausparametrit puikkohitsaus-, MAG-täytelankahitsaus- ja plasmahitsausprosessilla. Toisena tavoitteena oli selvittää lämmöntuonnin vaikutuksia hit-sausliitosten mekaanisiin ominaisuuksiin, iskusitkeyteen (-40 °C) ja ferriitti- / austeniittipitoi-suuksien jakaantumiseen. Tutkittavat hitsit olivat päittäishitsejä ja koelevyjen aineenpaksuus oli 6 mm. Koetulosten perusteella tehtiin hitsausohjeet kyseisille hitsausprosesseille. Työn kirjallisessa osassa on selvitetty yleisesti duplex-terästen käyttökohteita, mekaanisia ja kemiallisia ominaisuuksia sekä duplex-terästen korroosio-ominaisuuksia. Lisäksi on käsitelty eri hitsausprosesseja ja duplex-terästen hitsattavuutta, jossa selvitetään mm. terästen jähmet-tymistä, erkaumia ja faaseja, lämmöntuonnin vaikutuksia ja hitsausliitosten korroosionkestä-vyyttä. Teoriaosassa on kerrottu myös hitsausliitosten tarkastuksesta ja hitsiluokista. Työn kokeellisessa osassa esitellään kokeiden suoritus sekä ainetta rikkova ja ainetta rikko-maton tarkastus. Liitoksille suoritettava koestusohjelma noudatti pääosin menetelmäkoestan-dardin SFS-EN 15614-1 ohjetta. Hitseille tehtiin ainetta rikkomaton tarkastus, joka käsittää silmämääräisen tarkastuksen, pintatarkastuksen ja röntgentarkastuksen. Rikkovaa aineen-koetusta tehtiin sisältäen kovuusmittaukset, vetokokeet, taivutuskokeet jaiskusitkeyskokeet. Lisäksi valmistettiin metallografiset hieet, joita tutkimalla selvitettiin hitsausliitoksen metal-lurgiaa ja määriteltiin ferriitti- ja austeniittipitoisuudet. Kokeiden perusteella on laadittu hit-sausohjeet kullekin hitsausprosessille. Lisäksi kokeellisessa osassa on esitelty tulokset syö-pymäkokeesta, jossa selvitettiin eri materiaalien syöpymiskestävyyttä valkolipeäliuoksessa. Tutkimustuloksien perusteella LDX2102 duplex-materiaali onhyvin hitsattavaa laajalla hit-sausparametrialueella. Mekaaniset ominaisuudet, kuten lujuus- ja iskusitkeysarvot täyttävät materiaalistandardin SFS-EN10028-7 niille asettamat vaatimukset. Taivutussitkeys ja murto-venymät jäivät kuitenkin osalla koekappaleista vaatimustasoa alhaisemmiksi. Austeniitti- ja ferriittipitoisuudet vastaavat materiaalistandardin vaatimuksia.
Resumo:
Diplomityössä käsitellään pyöräkuormainkaivureita valmistavan yrityksen konepajatuotannon kehittämistä aihiovalmistuksen, hitsauksen ja koneistuksen osalta. Pääpaino kehittämistoimissa on hitsauksessa. Lähtökohtana tuotannonkehittämisen tarpeelle ovat tuotannon kasvu, kustannustehokkuuden lisääminen sekä pula ammattitaitoisesta työvoimasta. Diplomityössä selvitetään yrityksen vanhan konekannan päivittämismahdollisuuksia ja säästöjen hakemista tehokkaampia valmistusmenetelmiä käyttöönottamalla. Pohjatyönä tulevaisuuden tuotannon tehostamiselle selvitettiin nykyiset valmistuskustannukset. Työajankäytön historiatiedot löytyivät yrityksen tietojärjestelmästä, joita tarkennettiinkentältä kerätyin tiedoin. Myös koneiden käyttökustannukset tuntihinnat eri työvaiheille. selvitettiin ja näin saatiin määritettyä Lännen Tractors Oy:lle löytyi hitsaavassa tuotannossa kehitystoimenpiteitä, mitkä tekemällä voidaan tuotantoa tehostaa ilman investointeja. Tuotannon kehittäminen jaettiin kahteen vaiheeseen: 1. vaihe, missä ei investoida vaan keskitytään nykyisten menetelmien kehittämiseen ja vanhojen koneiden tehokkaampaan hyödyntämiseen ja 2.vaihe, missä tarkastellaan mahdollisten investointien kannattavuutta sekä selvitetään alihankinnan mandollisuutta. Tuotannon tehostamisen 1. vaiheen toimenpiteillä saadaan hitsauskustannuksia pienennettyä jopa 20 %. 2. vaiheen oman tuotannon tehostamiseksi koneistuksen eri tehtiin investointilaskelmat robottihitsaussolun ja vaihtoehtojen takaisinmaksuajasta sekä sisäisestä korkokannasta. Uuden robottihitsaussolun takaisinmaksuaika on n. 3 vuotta. Näiden laskelmien perusteella mahdollisuudet valmistaa komponentteja taloudellisesti. investoinneilla voidaan pyöräkuormainkaivureiden saavuttaa hitsattuja
Resumo:
Diplomityössä tutkitaan, miten diodilaserhitsauksen ominaisuuksia ja mahdollisuuksia voidaan hyödyntää teollisuuden käytännön sovellutuksissa. Työn alkuosassa esitelläändiodilaserin toimintaperiaatetta ja säteen muodostumista. Lisäksi työssä on esitetty laserin käyttöön liittyviä turvallisuusseikkoja. Hitsaukseen liittyviä teknisiä seikkoja on myös käyty läpi. Työn kokeellisessa osassa tutkitaan kylmävalssatun ja ruostumattoman teräksen hitsattavuutta eri liitosmuodoissa kuten päittäis-, laippa- ja päällekkäisliitoksissa. Hitsauskokeet suoritettiin eri paksuisille levyille. Tavoitteena oli löytää eri levymateriaaleille ja liitosmuodoille oikeat nopeus- ja tehoparametrit. Diodilaserkokeet suoritettiin käyttäen Hämeen ammattikorkeakoulun Riihimäen yksikön 2 kW:n tehoista diodilaserlaitteistoa. Koekappaleet olivat 100 x 200 mm kokoisia. Osalle hitsatuista kappaleista tehtiin vetokokeita ja mikrokovuuskokeita. Hitseille tehtiin silmämääräinen tarkastus ja lisäksi tutkittiin hitsejä mikroskooppikuvauksella. Koekappaleita hitsaamalla selvitettiin teho- ja nopeusparametrit. Hitsattaessa kylmävalssattuja levyjä muodostui hitsausvirheitä T- ja päittäisliitoksissa. Hitsausvirheet huomattiin, kun suoritettiin vetokokeita ja tehtiin hietä. Mutta yleensä kylmävalssattujen levyjen hitsaus onnistui moitteettomasti. Kun hitsaukset suoritettiin käyttämällä ruostumatonta terästä, hitsausvirheitä ei muodostunut, kuten kylmävalssattuihin levyihin. Ruostumattomien terästen hitsaus onnistui moitteettomasti. Tunkeuma molemmissa levytyypeissä oli hyvä. Todettiin, että levyt hitsautuivat yhteen hitsauksen alussa moitteettomasti, mutta loppuosa ei hitsautunut kunnolla, koska lämpötilanmuutos muokkasi levyjen muotoja.
Resumo:
Sudoku problems are some of the most known and enjoyed pastimes, with a never diminishing popularity, but, for the last few years those problems have gone from an entertainment to an interesting research area, a twofold interesting area, in fact. On the one side Sudoku problems, being a variant of Gerechte Designs and Latin Squares, are being actively used for experimental design, as in [8, 44, 39, 9]. On the other hand, Sudoku problems, as simple as they seem, are really hard structured combinatorial search problems, and thanks to their characteristics and behavior, they can be used as benchmark problems for refining and testing solving algorithms and approaches. Also, thanks to their high inner structure, their study can contribute more than studies of random problems to our goal of solving real-world problems and applications and understanding problem characteristics that make them hard to solve. In this work we use two techniques for solving and modeling Sudoku problems, namely, Constraint Satisfaction Problem (CSP) and Satisfiability Problem (SAT) approaches. To this effect we define the Generalized Sudoku Problem (GSP), where regions can be of rectangular shape, problems can be of any order, and solution existence is not guaranteed. With respect to the worst-case complexity, we prove that GSP with block regions of m rows and n columns with m = n is NP-complete. For studying the empirical hardness of GSP, we define a series of instance generators, that differ in the balancing level they guarantee between the constraints of the problem, by finely controlling how the holes are distributed in the cells of the GSP. Experimentally, we show that the more balanced are the constraints, the higher the complexity of solving the GSP instances, and that GSP is harder than the Quasigroup Completion Problem (QCP), a problem generalized by GSP. Finally, we provide a study of the correlation between backbone variables – variables with the same value in all the solutions of an instance– and hardness of GSP.
Resumo:
Tractable cases of the binary CSP are mainly divided in two classes: constraint language restrictions and constraint graph restrictions. To better understand and identify the hardest binary CSPs, in this work we propose methods to increase their hardness by increasing the balance of both the constraint language and the constraint graph. The balance of a constraint is increased by maximizing the number of domain elements with the same number of occurrences. The balance of the graph is defined using the classical definition from graph the- ory. In this sense we present two graph models; a first graph model that increases the balance of a graph maximizing the number of vertices with the same degree, and a second one that additionally increases the girth of the graph, because a high girth implies a high treewidth, an important parameter for binary CSPs hardness. Our results show that our more balanced graph models and constraints result in harder instances when compared to typical random binary CSP instances, by several orders of magnitude. Also we detect, at least for sparse constraint graphs, a higher treewidth for our graph models.
Resumo:
Recently, edge matching puzzles, an NP-complete problem, have received, thanks to money-prized contests, considerable attention from wide audiences. We consider these competitions not only a challenge for SAT/CSP solving techniques but also as an opportunity to showcase the advances in the SAT/CSP community to a general audience. This paper studies the NP-complete problem of edge matching puzzles focusing on providing generation models of problem instances of variable hardness and on its resolution through the application of SAT and CSP techniques. From the generation side, we also identify the phase transition phenomena for each model. As solving methods, we employ both; SAT solvers through the translation to a SAT formula, and two ad-hoc CSP solvers we have developed, with different levels of consistency, employing several generic and specialized heuristics. Finally, we conducted an extensive experimental investigation to identify the hardest generation models and the best performing solving techniques.
Resumo:
Recently, edge matching puzzles, an NP-complete problem, have rececived, thanks to money-prized contests, considerable attention from wide audiences. We consider these competitions not only a challenge for SAT/CSP solving techniques but also as an opportunity to showcase the advances in the SAT/CSP community to a general audience. This paper studies the NP-complete problem of edge matching puzzles focusing on providing generation models of problem instances of variable hardness and on its resolution through the application of SAT and CSP techniques. From the generation side, we also identify the phase transition phenomena for each model. As solving methods, we employ both; SAT solvers through the translation to a SAT formula, and two ad-hoc CSP solvers we have developed, with different levels of consistency, employing several generic and specialized heuristics. Finally, we conducted an extensive experimental investigation to identify the hardest generation models and the best performing solving techniques.
Resumo:
This thesis describes the development of advanced silicon radiation detectors and their characterization by simulations, used in the work for searching elementary particles in the European Organization for Nuclear Research, CERN. Silicon particle detectors will face extremely harsh radiation in the proposed upgrade of the Large Hadron Collider, the future high-energy physics experiment Super-LHC. The increase in the maximal fluence and the beam luminosity up to 1016 neq / cm2 and 1035 cm-2s-1 will require detectors with a dramatic improvement in radiation hardness, when such a fluence will be far beyond the operational limits of the present silicon detectors. The main goals of detector development concentrate on minimizing the radiation degradation. This study contributes mainly to the device engineering technology for developing more radiation hard particle detectors with better characteristics. Also the defect engineering technology is discussed. In the nearest region of the beam in Super-LHC, the only detector choice is 3D detectors, or alternatively replacing other types of detectors every two years. The interest in the 3D silicon detectors is continuously growing because of their many advantages as compared to conventional planar detectors: the devices can be fully depleted at low bias voltages, the speed of the charge collection is high, and the collection distances are about one order of magnitude less than those of planar technology strip and pixel detectors with electrodes limited to the detector surface. Also the 3D detectors exhibit high radiation tolerance, and thus the ability of the silicon detectors to operate after irradiation is increased. Two parameters, full depletion voltage and electric field distribution, is discussed in more detail in this study. The full depletion of the detector is important because the only depleted area in the detector is active for the particle tracking. Similarly, the high electric field in the detector makes the detector volume sensitive, while low-field areas are non-sensitive to particles. This study shows the simulation results of full depletion voltage and the electric field distribution for the various types of 3D detectors. First, the 3D detector with the n-type substrate and partial-penetrating p-type electrodes are researched. A detector of this type has a low electric field on the pixel side and it suffers from type inversion. Next, the substrate is changed to p-type and the detectors having electrodes with one doping type and the dual doping type are examined. The electric field profile in a dual-column 3D Si detector is more uniform than that in the single-type column 3D detector. The dual-column detectors are the best in radiation hardness because of their low depletion voltages and short drift distances.