993 resultados para Intensity-dependent indices
Resumo:
Information processing accounts propose that autonomic orienting reflects the amount of resources allocated to process a stimulus. However, secondary task reaction time (RT), a supposed measure of processing resources, has shown a dissociation from autonomic orienting. The present study tested the hypothesis that secondary task RT reflects a serial processing mechanism. Participants (N = 24) were presented with circle and ellipse shapes and asked to count the number of longer-than-usual presentations of one shape (task-relevant) and to ignore presentations of a second shape (task-irrelevant). Concurrent with the counting task, participants performed a secondary RT task to an auditory probe presented at either a high or low intensity and at two different probe positions following shape onset (50 and 300 ms). Electrodermal orienting was larger during task-relevant shapes than during task-irrelevant shapes, but secondary task RT to the high-intensity probe was slower during the latter. In addition, an underadditive interaction between probe stimulus intensity and probe position was found in secondary RT. The findings are consistent with a serial processing model of secondary RT and suggest that the notion of processing stages should be incorporated into current information-processing models of autonomic orienting.
Resumo:
Experimental work has been carried out to investigate the effect of major operating variables on milling efficiency of calcium carbonate in laboratory and pilot size Tower and Sala Agitated (SAM) mills. The results suggest that the stirrer speed, media size and slurry density affect the specific energy consumption required to achieve the given product size. Media stress intensity analysis developed for high-speed horizontal mills was modified to include the effect of gravitational force in the vertical stirred mills such as the Tower and SAM units. The results suggest that this approach can be successfully applied for both mill types. For a given specific energy input, an optimum stress intensity range existed, for which the finest product was achieved. Finer product and therefore higher milling efficiency was obtained with SAM in the range of operating conditions tested. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The aim of this research was to examine the nature and order of recovery of orientation and memory functioning during Post-Traumatic Amnesia (PTA) in relation to injury severity and PTA duration. The Westmead PTA Scale was used across consecutive testing days to assess the recovery of orientation and memory during PTA in 113 patients. Two new indices were examined: a Consistency-of-Recovery and a Duration-to-Recovery index. a predictable order of recovery was observed during PTA: orientation-to-person recovered sooner and more consistently than the following cluster; orientation-to-time, orientation-to-place, and the ability to remember a face and name. However, the type of memory functioning required for the recall face and name task recovered more consistently than that required for memorizing three pictures. An important overall finding was that the order-of-recovery'' of orientation and memory functioning was dependent upon both the elapsed days since injury, and the consistency of recovery. The newly developed indices were shown to be a valuable means of accounting for differences between groups in the elapsed days to recovery of orientation and memory. These indices also clearly increase the clinical utility of the Westmead PTA Scale and supply an objective means of charting (and potentially predicting) patients' recovery on the different components of orientation and memory throughout their period of hospitalization.
Resumo:
(E)-N-Hexadecyl-4-[2-(4-octadecyloxynaphthyl) ethenyl] quinolinium bromide, which has a wide-bodied chromophore and terminal n-alkyl groups, adopts a U-shape when spread at the air-water interface but a stretched conformation when compressed to ca. 35 mN m(-1). The high-pressure phase has a narrow stability range prior to collapse but may be extended from 40 to 60 mN m(-1) by co-spreading the dye in a 1 : 1 ratio with docosanoic acid. The mixed Langmuir-Blodgett (LB) film has a monolayer thickness of 4.6 +/- 0.2 nm which decreases to 2.5 +/- 0.1 nm layer(-1) in the bulk, the reduction arising from an interdigitating layer arrangement, both top and bottom. It is the first example of LB-Lego(R) and, in addition, represents the only fully interdigitating structure with non-centrosymmetrically aligned chromophores. They are tilted 38 degrees from the substrate normal. The second-harmonic intensity increases quadratically with the number of layers, i.e. as I-(N)(2 omega) = (I(1)N2)-N-2 omega, with a second-order susceptibility of chi ((2))(zzz) = 30 pm V-1 at 1064 nm for refractive indices of n(omega) = 1.55 and n(2 omega) = 1.73, d = 2.5 nm layer(-1) and phi = 38 degrees. Angle resolved X-ray photoelectron spectra (XPS) of these films provide no evidence of the bromide counterion, which suggests that it is replaced by OH 2 or HCO3-, which occur naturally in the aqueous subphase, or C21H43COO- from the co-deposited fatty acid. This probably applies to all cationic dyes deposited by the LB technique.
Resumo:
The generalization of the quasi mode theory of macroscopic quantization in quantum optics and cavity QED presented in the previous paper, is applied to provide a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes. The derivation of the laws of reflection and refraction is achieved through the dual application of the quasi mode theory and a quantum scattering theory based on the Heisenberg picture. Formal expressions from scattering theory are given for the reflection and transmission coefficients. The behaviour of the intensity for a localized one photon wave packet coming in at time minus infinity from the incident direction is examined and it is shown that at time plus infinity, the light intensity is only significant where the classical laws of reflection and refraction predict. The occurrence of both refraction and reflection is dependent upon the quasi mode theory coupling constants between incident and transmitted region quasi modes being nonzero, and it is seen that the contributions to such coupling constants come from the overlap of the mode functions in the boundary layer region, as might be expected from a microscopic theory.
Resumo:
Computational simulations of the title reaction are presented, covering a temperature range from 300 to 2000 K. At lower temperatures we find that initial formation of the cyclopropene complex by addition of methylene to acetylene is irreversible, as is the stabilisation process via collisional energy transfer. Product branching between propargyl and the stable isomers is predicted at 300 K as a function of pressure for the first time. At intermediate temperatures (1200 K), complex temporal evolution involving multiple steady states begins to emerge. At high temperatures (2000 K) the timescale for subsequent unimolecular decay of thermalized intermediates begins to impinge on the timescale for reaction of methylene, such that the rate of formation of propargyl product does not admit a simple analysis in terms of a single time-independent rate constant until the methylene supply becomes depleted. Likewise, at the elevated temperatures the thermalized intermediates cannot be regarded as irreversible product channels. Our solution algorithm involves spectral propagation of a symmetrised version of the discretized master equation matrix, and is implemented in a high precision environment which makes hitherto unachievable low-temperature modelling a reality.
Resumo:
Genistein is an isoflavenoid that is abundant in soy beans. Genistein has been reported to have a wide range of biological activities and to play a role in the diminished incidence of breast cancer in populations that consume a soy-rich diet. Genistein was originally identified as an inhibitor of tyrosine kinases; however, it also inhibits topoisomerase II by stabilizing the covalent DNA cleavage complex, an event predicted to cause DNA damage. The topoisomerase II inhibitor etoposide acts in a similar manner. Here we show that genistein induces the up-regulation of p53 protein, phosphorylation of p53 at serine 15, activation of the sequence-specific DNA binding properties of p53, and phosphorylation of the hCds1/Chk2 protein kinase at threonine 68. Phosphorylation and activation of p53 and phosphorylation of Chk2 were not observed in ATM-deficient cells. In contrast, the topoisomerase II inhibitor etoposide induced phosphorylation of p53 and Chk2 in ATM-positive and ATM-deficient cells. In addition, genistein-treated ATM-deficient cells were significantly more susceptible to genistein-induced killing than were ATM-positive cells. Together our data suggest that ATM is required for activation of a DNA damage-induced pathway that activates p53 and Chk2 in response to genistein.
Resumo:
The marine toxin bistratene A (BisA) potently induces cytostasis and differentiation in a variety of systems. Evidence that BisA is a selective activator of protein kinase C (PKC) delta implicates PKC delta signaling in the negative growth-regulatory effects of this agent. The current study further investigates the signaling pathways activated by BisA by comparing its effects with those of the PKC agonist phorbol 12-myristate 13-acetate (PMA) in the IEC-18 intestinal crypt cell line. Both BisA and PMA induced cell cycle arrest in these cells, albeit with different kinetics. While BisA produced sustained cell cycle arrest in G(o)/G(1) and G(2)/M, the effects of PMA were transient and involved mainly a G(o)/G(1), blockade. BisA also produced apoptosis in a proportion of the population, an effect not seen with PMA. Both agents induced membrane translocation/activation of PKC, with BisA translocating only PKC delta and PMA translocating PKC alpha, delta, and epsilon in these cells. Notably, while depletion of PKC alpha, delta, and epsilon abrogated the cell cycle-specific effects of PMA in IEC-18 cells, the absence of these PKC isozymes failed to inhibit BisA-induced G(o)/G(1), and G(2)/M arrest or apoptosis. The cell cycle inhibitory and apoptotic effects of BisA, therefore, appear to be PKC-independent in IEG-18 cells. On the other hand, BisA and PMA both promoted PKC-dependent activation of Erk 1 and 2 in this system. Thus, intestinal epithelial cells respond to BisA through activation of at least two signaling pathways: a PKC delta -dependent pathway, which leads to activation of mitogen-activated protein kinase and possibly cytostasis in the appropriate context, and a PKC-independent pathway, which induces both cell cycle arrest in G(o)/G(1) and G(2)/M and apoptosis through as yet unknown mechanisms. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
The adaptations of muscle to sprint training can be separated into metabolic and morphological changes. Enzyme adaptations represent a major metabolic adaptation to sprint training, with the enzymes of all three energy systems showing signs of adaptation to training and some evidence of a return to baseline levels with detraining. Myokinase and creatine phosphokinase have shown small increases as a result of short-sprint training in some studies and elite sprinters appear better able to rapidly breakdown phosphocreatine (PCr) than the sub-elite. No changes in these enzyme levels have been reported as a result of detraining. Similarly, glycolytic enzyme activity (notably lactate dehydrogenase, phosphofructokinase and glycogen phosphorylase) has been shown to increase after training consisting of either long (> 10-second) or short (< 10-second) sprints. Evidence suggests that these enzymes return to pre-training levels after somewhere between 7 weeks and 6 months of detraining. Mitochondrial enzyme activity also increases after sprint training, particularly when long sprints or short recovery between short sprints are used as the training stimulus. Morphological adaptations to sprint training include changes in muscle fibre type, sarcoplasmic reticulum, and fibre cross-sectional area. An appropriate sprint training programme could be expected to induce a shift toward type Ha muscle, increase muscle cross-sectional area and increase the sarcoplasmic reticulum volume to aid release of Ca2+. Training volume and/or frequency of sprint training in excess of what is optimal for an individual, however, will induce a shift toward slower muscle contractile characteristics. In contrast, detraining appears to shift the contractile characteristics towards type IIb, although muscle atrophy is also likely to occur. Muscle conduction velocity appears to be a potential non-invasive method of monitoring contractile changes in response to sprint training and detraining. In summary, adaptation to sprint training is clearly dependent on the duration of sprinting, recovery between repetitions, total volume and frequency of training bouts. These variables have profound effects on the metabolic, structural and performance adaptations from a sprint-training programme and these changes take a considerable period of time to return to baseline after a period of detraining. However, the complexity of the interaction between the aforementioned variables and training adaptation combined with individual differences is clearly disruptive to the transfer of knowledge and advice from laboratory to coach to athlete.
Resumo:
In the honeybee the cAMP-dependent signal transduction cascade has been implicated in processes underlying learning and memory, The cAMP-dependent protein kinase (PKA) is the major mediator of cAMP action. To characterize the PKA system in the honeybee brain we cloned a homologue of a PKA catalytic subunit from the honeybee,The deduced amino acid sequence shows 80-94% identity with catalytic subunits of PKA from Drosophila melanogaster, Aplysia californica and mammals. The corresponding gene is predominantly expressed in the mushroom bodies, a structure that is involved in learning and memory processes. However, expression can also be found in the antennal and optic lobes,The level of expression varies within all three neuropiles.
Resumo:
Large chemical libraries can be synthesized on solid-support beads by the combinatorial split-and-mix method. A major challenge associated with this type of library synthesis is distinguishing between the beads and their attached compounds. A new method of encoding these solid-support beads, 'colloidal bar-coding', involves attaching fluorescent silica colloids ('reporters') to the beads as they pass through the compound synthesis, thereby creating a fluorescent bar code on each bead. In order to obtain sufficient reporter varieties to bar code extremely large libraries, many of the reporters must contain multiple fluorescent dyes. We describe here the synthesis and spectroscopic analysis of various mono- and multi-fluorescent silica particles for this purpose. It was found that by increasing the amount of a single dye introduced into the particle reaction mixture, mono- fluorescent silica particles of increasing intensities could be prepared. This increase was highly reproducible and was observed for six different fluorescent dyes. Multi-fluorescent silica particles containing up to six fluorescent dyes were also prepared. The resultant emission intensity of each dye in the multi-fluorescent particles was found to be dependent upon a number of factors; the hydrolysis rate of each silane-dye conjugate, the magnitude of the inherent emission intensity of each dye within the silica matrix, and energy transfer effects between dyes. We show that by varying the relative concentration of each silane-dye conjugate in the synthesis of multi-fluorescent particles, it is possible to change and optimize the resultant emission intensity of each dye to enable viewing in a fluorescence detection instrument.
Resumo:
The NS5 protein of the flavivirus Kunjin (KUN) contains conserved sequence motifs characteristic of RNA-dependent RNA polymerase (RdRp) activity. To investigate this activity in vitro, recombinant NS5 proteins with C-terminal (NS5CHis) and N-terminal (NS5NHis) hexahistidine tags were produced in baculovirus-infected insect cells and purified to near homogeneity by nickel affinity chromatography. Purified NS5CHis exhibited RdRp activity with both specific (9 kb KUN replicon) and non-specific (8.3 kb Semliki Forest virus replicon) RNA templates; this activity did not require the presence of additional viral and/or cellular cofactors. RdRp activity of purified NS5NHis protein was reduced in comparison to NS5CHis, while purified NS5NHis incorporating a GDD -> GVD mutation within the polymerase active site (NS5GVD) lacked RdRp activity. RNase A digestion of the RdRp reaction products indicated that they were double-stranded and of a similar size to the KUN replicative form produced in Vero cells, thus demonstrating that the KUN NS5 protein has an intrinsic, albeit low and non-specific RdRp activity in vitro, similar to that reported for recombinant RdRp of other flaviviruses. However, in contrast to RNA polymerases of other Flavivirus species, purified KUN NS5 polymerase produced a single, full-length replicon RNA product, thus demonstrating efficient processivity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Background: Heterozygotes for the C282Y mutation of the HFE gene may have altered hematology indices and higher iron stores than wild-type subjects. Methods: We performed a cross-sectional analysis of 1488 females and 1522 males 20-79 years of age drawn from the Busselton (Australia) population study to assess the effects of HFE genotype, age, gender, and lifestyle on serum iron and hematology indices. Results: Male C282Y heterozygotes had increased transferrin saturation compared with the wild-type genotype. Neither male nor female heterozygotes had significantly increased ferritin values compared with the wild-type genotype. Younger (20-29 years) wild-type males, but not heterozygous males, had significantly lower ferritin values than wild-type males in the older age groups. Compound heterozygous subjects had increased means for serum iron, transferrin saturation, corpuscular volume, and corpuscular hemoglobin compared with the wild-type genotype, and the males also had increased ferritin values (medians 323 vs 177 mug/L; P = 0.003). In both male and female wild-type subjects, an increased body mass index was associated with decreased serum iron and transferrin saturation and increased ferritin values. There was a significant increase in ferritin concentrations in both genders with increasing frequency of red meat consumption above a baseline of 1-2 times per week and alcohol intakes >10 g/day. Conclusions: Male C282Y heterozygotes had significantly increased transferrin saturation values. Compound heterozygous (C282Y/H63D) subjects formed a separate category of C282Y heterozygotes in whom both iron and red cell indices were significantly increased compared with the wild-type genotype. (C) 2001 American Association for Clinical Chemistry.
Resumo:
skeletal disease. Bone remodeling is initiated by osteoclastic resorption followed by osteoblastic formation of new bone. Receptor activator of nuclear factor KB ligand (RANKL) is a newly described regulator of osteoclast formation and function, the activity of which appears to be a balance between interaction with its receptor RANK and with an antagonist binding protein osteoprotegerin (OPG). Therefore, we have examined the relationship between the expression of RANKL, RANK, and OPG and indices of bone structure and turnover in human cancellous bone from the proximal femur. Bone samples were obtained from individuals with osteoarthritis (OA) at joint replacement surgery and from autopsy controls. Histomorphometric analysis of these samples showed that eroded surface (ES/BS) and osteoid surface (OS/BS) were positively associated in both control (p < 0.001) and OA (p < 0.02), indicating that the processes of bone resorption and bone formation remain coupled in OA, as they are in controls. RANKL, OPG, and RANK messenger RNA, (mRNA) were abundant in human cancellous bone, with significant differences between control and OA individuals. In coplotting the molecular and histomorphometric data, strong associations were found between the ratio of RANKL/OPG mRNA and the indices of bone turnover (RANKL/OPG vs. ES/BS: r = 0.93, p < 0.001; RANKL/OPG vs. OS/BS: r = 0.80, p < 0.001). These relationships were not evident in trabecular bone from severe OA, suggesting that bone turnover may be regulated differently in this disease. We propose that the effective concentration of RANKL is related causally to bone turnover.
Resumo:
Growing evidence supports low-intensity pulsed ultrasound (US) as an osteogenic mechanical stimulus. Its effects on isolated bone cells and on fractured bone are established. However, its effects on osteoporosis are not clear. This study examined US effects on ovariectomy (OVX) induced bone changes within the rodent hindlimb (distal femur and proximal tibia), and on normal bone in animals following sham-OVX. Animals were exposed to daily unilateral active-US and contralateral inactive-US for 12 weeks. Bone status was assessed using dual energy X-ray absorptiometry and histomorphometry. Ovariectomy resulted in significant bone changes. Low-intensity pulsed US did not influence these changes. These results suggest that the US dose introduced may not be a beneficial treatment for osteoporosis, and that intact bone may be less sensitive to US than fractured bone and isolated bone cells. This may relate to the biophysical mechanisms of action of US, US-bone interactions and tissue level processes taking place.