999 resultados para Infrared photography.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assembly history of massive galaxies is one of the most important aspects of galaxy formation and evolution. Although we have a broad idea of what physical processes govern the early phases of galaxy evolution, there are still many open questions. In this thesis I demonstrate the crucial role that spectroscopy can play in a physical understanding of galaxy evolution. I present deep near-infrared spectroscopy for a sample of high-redshift galaxies, from which I derive important physical properties and their evolution with cosmic time. I take advantage of the recent arrival of efficient near-infrared detectors to target the rest-frame optical spectra of z > 1 galaxies, from which many physical quantities can be derived. After illustrating the applications of near-infrared deep spectroscopy with a study of star-forming galaxies, I focus on the evolution of massive quiescent systems.

Most of this thesis is based on two samples collected at the W. M. Keck Observatory that represent a significant step forward in the spectroscopic study of z > 1 quiescent galaxies. All previous spectroscopic samples at this redshift were either limited to a few objects, or much shallower in terms of depth. Our first sample is composed of 56 quiescent galaxies at 1 < z < 1.6 collected using the upgraded red arm of the Low Resolution Imaging Spectrometer (LRIS). The second consists of 24 deep spectra of 1.5 < z < 2.5 quiescent objects observed with the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE). Together, these spectra span the critical epoch 1 < z < 2.5, where most of the red sequence is formed, and where the sizes of quiescent systems are observed to increase significantly.

We measure stellar velocity dispersions and dynamical masses for the largest number of z > 1 quiescent galaxies to date. By assuming that the velocity dispersion of a massive galaxy does not change throughout its lifetime, as suggested by theoretical studies, we match galaxies in the local universe with their high-redshift progenitors. This allows us to derive the physical growth in mass and size experienced by individual systems, which represents a substantial advance over photometric inferences based on the overall galaxy population. We find a significant physical growth among quiescent galaxies over 0 < z < 2.5 and, by comparing the slope of growth in the mass-size plane dlogRe/dlogM with the results of numerical simulations, we can constrain the physical process responsible for the evolution. Our results show that the slope of growth becomes steeper at higher redshifts, yet is broadly consistent with minor mergers being the main process by which individual objects evolve in mass and size.

By fitting stellar population models to the observed spectroscopy and photometry we derive reliable ages and other stellar population properties. We show that the addition of the spectroscopic data helps break the degeneracy between age and dust extinction, and yields significantly more robust results compared to fitting models to the photometry alone. We detect a clear relation between size and age, where larger galaxies are younger. Therefore, over time the average size of the quiescent population will increase because of the contribution of large galaxies recently arrived to the red sequence. This effect, called progenitor bias, is different from the physical size growth discussed above, but represents another contribution to the observed difference between the typical sizes of low- and high-redshift quiescent galaxies. By reconstructing the evolution of the red sequence starting at z ∼ 1.25 and using our stellar population histories to infer the past behavior to z ∼ 2, we demonstrate that progenitor bias accounts for only half of the observed growth of the population. The remaining size evolution must be due to physical growth of individual systems, in agreement with our dynamical study.

Finally, we use the stellar population properties to explore the earliest periods which led to the formation of massive quiescent galaxies. We find tentative evidence for two channels of star formation quenching, which suggests the existence of two independent physical mechanisms. We also detect a mass downsizing, where more massive galaxies form at higher redshift, and then evolve passively. By analyzing in depth the star formation history of the brightest object at z > 2 in our sample, we are able to put constraints on the quenching timescale and on the properties of its progenitor.

A consistent picture emerges from our analyses: massive galaxies form at very early epochs, are quenched on short timescales, and then evolve passively. The evolution is passive in the sense that no new stars are formed, but significant mass and size growth is achieved by accreting smaller, gas-poor systems. At the same time the population of quiescent galaxies grows in number due to the quenching of larger star-forming galaxies. This picture is in agreement with other observational studies, such as measurements of the merger rate and analyses of galaxy evolution at fixed number density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The near-infrared nonvolatile holographic recording has been realized in a doubly doped LiNbO3:Fe:Rh crystal by the traditional two-center holographic recording scheme, for the first time. The recording performance of this crystal has been investigated by recording with 633 nm red light, 752 nm red light and 799 nm near-infrared light and sensitizing with 405 nm purple light. The experimental results show that, co-doped with Fe and Rh, the near-infrared absorption and the photovoltaic coefficient of shallow trap Fe are enhanced in this LiNbO3:Fe:Rh crystal, compared with other doubly doped LiNbO3 crystals Such as LiNbO3:Fe:Mn. It is also found that the sensitizing light intensity affects the near-infrared recording sensitivity in a different way than two-center holographic recording with shorter wavelength, and the origin of experimental results is analyzed. (C) 2007 Elsevier GrnbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fluorescence and up-conversion spectral properties of Er3+-doped TeO2-ZnO and TeO2-ZnO-PbCl2 glasses suitable for developing optical fiber amplifier and laser have been fabricate and characterized. Strong green (around 527-550 nm) and red (around 661 nm) up-conversion emissions under 977 nm laser diode excitation were investigated, corresponding to H-2(11/2), S-4(3/2), --> I-4(15/2) and F-4(9/2) --> I-4(15/2) transitions of Er3+ ions respectively, have been observed and the involved mechanisms have been explained. The dependence of up-converted fluorescence intensity versus laser power confirm that two-photons contribute to up-conversion of the green-red emissions. The novelty of this kind of optical material has been its ability in resisting devitrification, and its promising optical properties strongly encourage for their further development as the rare-earth doped optical fiber amplifiers and upconversion fiber laser systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the broadband infrared emission of bismuth doped and bismuth/dysprosium codoped chalcohalide glasses. It is found that the bismuth/dysprosium codoping can drastically enhance the fluorescence as compared with either bismuth or dysprosium doped glasses. Meanwhile, the full width at half maximum of bismuth/dysprosium codoped glasses is over 170 nm, which is the largest value among all the reported rare-earth doped chalcohalide glasses. An ideal way for energy consumption between bismuth and dysprosium ions is supposed. Such improved gain spectra of both bismuth and dysprosium ions may have potential applications in developing broadband fibre amplifiers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter reports the ultrabroadband infrared luminescence from 1000- to 1700-nm wavelength range and demonstrate optical amplification at the second optical communication window in a novel bismuth-doped germanosilicate glass. The full-width at half-maximum of the luminescence is about 300 mn and the optical gain is larger than 1.37 within the wavelength region from 1272 to 1348 nm with pump power 0.97 W. This material could be useful to fabricate ultrabroadband optical fiber amplifiers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bismuth (Bi)-doped and Bi/Dy co-doped chalcohalide glasses are investigated as promising materials for amplifiers in optical communication. The samples synthesized at lower melting temperatures (MTs) are characterized by more intensified infrared emissions. With respect to the redox process of a liquid mixture at different MTs, we attribute an emission at 1230 nm to low-valent Bi ions. The lower MT favors the formation of LVB ions, i.e. Bi+ or Bi2+, while the higher MT promotes the production of higher-valent Bi ions Bi3+. An enhanced broadband infrared luminescence with the full-width at half-maximum over 200 nm is achieved from the present Bi/Dy co-doped chalcohalide glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent Ni2+-doped MgO-Al2O3-TiO2-SiO2 glass ceramics were prepared, and the optical properties of Ni2+-doped glass ceramics were investigated. Broadband emission centered at 1320 nm was observed by 980 nm excitation. The longer wavelength luminescence compared with Ni2+-doped Li2O-Ga2O3-SiO2 glass ceramics is ascribed to the low crystal field hold by Ni2+ in MgO-Al2O3-TiO2-SiO2 glass ceramics. The change in optical signals at the telecommunication bands with or without 980 nm excitation was also measured when the seed beam passes through the bulk gain host.(C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on ultrabroad infrared (IR) luminescences covering the 1000-1700-nm wavelength region, from Bi-doped 75GeO(2) 20RO-5Al(2)O(3) 1B(2)O(3) (R = Sr, Ca, and Mg) glasses. The full width at half-maximum of the IR luminescences excited at 980 nm increases (315 -> 440 -> 510 nm) with the change of alkaline earth metal (Mg2+ -> Ca2+ -> Sr2+). The fluorescence lifetime of the glass samples is 1725, 157, and 264 mu s when R is Sr, Ca, and Mg, respectively. These materials may be promising candidates for broad-band fiber amplifiers and tunable laser resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent glass-ceramics containing beta-Ga2O3:Ni2+ nanocrystals were synthesized and characterized by X-ray diffraction, transmission electron microscopy, and electron energy loss spectroscopy. Intense broad-band luminescence centering at 1200 nm was observed when the sample was excited by a diode laser at 980 nm. The room-temperature fluorescent lifetime was 665 mu s, which is longer than the Ni2+-doped ZnAl2O4 and LiGa5O8 glass-ceramics and is also comparable to the Ni2+-doped LiGa5O8 single crystal. The intense infrared luminescence with long fluorescent lifetime may be ascribed to the high crystal field hold by Ni2+ and the moderate lattice phonon energy of beta-Ga2O3. The excellent optical properties of this novel material indicate that it might be a promising candidate for broad-band amplifiers and room-temperature tunable lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadband infrared luminescence centred at around 1300 nm with full-width at half maximum of about 342 nm was observed from transparent Ni2+-doped lithium-alumino-silicate glass-ceramics embedded with beta-eucryptite crystallines. The room temperature fluorescent lifetime was 98 mu s. The transparent glass-ceramics may have potential applications in a widely tunable laser and a super-broadband optical amplifier for optical communications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent glass ceramics have been obtained by nucleation and growth of Y2Te6O15 or Er2Te5O13 cubic phase in a new Er3+-doped oxyfluoride tellurite glass. Effect of beat treatment on absorption spectra, luminescence and up-conversion properties in the oxyfluoride tellurite glass has been investigated. With heat treatment the ultraviolet absorption edge red shifted evidently for the oxyfluoride telluride glass. The near infrared emission that corresponds to Er3+:I-4(13/2)-> I-4(15/2) can be significantly enhanced after heat treatment. Under 980 nm LD pumping, red and green up-conversion intensity of Er3+ in the glass ceramic can be observed much stronger than that in the base glass. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadband infrared luminescence covering the optical telecommunication wavelength region of 0, E and S bands was observed from bismuth-doped zinc aluminosilicate glasses and glass-ceramics. The spectroscopic properties of the glasses and glass-ceramics depend on the thermal-treatment history. With the appearance of gahnite (ZnAl2O4) crystalline phase, the fluorescent peak moves to longer wavelength, but the fluorescent intensity decreases. The similar to 1300 nm fluorescence with a FWHM larger than 250 nm and a lifetime longer than 600 mu s possesses these optical materials with potential applications in laser devices and broadband amplifiers. The broad infrared luminescence from the bismuth-doped zinc aluminosilicate glasses and glass-ceramics might be from BiO or bismuth clusters rather than from Bi5+ and Bi3+. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report ultrabroad infrared luminescence from Bi-doped aluminogermanate glasses. The infrared luminescence almost covers the whole low loss wavelength region (1200-1650 nm) of silica glass fiber when excited by a diode laser at 980 nm. The full width at half maximum (FWHM) of the luminescence is 510 nm. The luminescence peak can be divided into three Gaussian peaks, and the fluorescence lifetime of the three emissions are 297 mu s, 470 mu s and 1725 mu s, respectively. These fluorescence properties indicate that the glasses are promising material for broadband optical amplifiers. (C) 2007 Elsevier Ltd. All rights reserved.