930 resultados para Inflation (Finance) - Mathematical models
Resumo:
Sobre l' estudi de la propagació de les epidèmies utilitzant models matemàtics
Resumo:
Compositional data (concentrations) are common in geosciences. Neglecting its character mey lead to erroneous conclusions. Spurious correlation (K. Pearson, 1897) has disastrous consequences. On the basis of the pioneering work by J. Aitchison in the 1980s, a methodology free of these drawbacks is now available. The geometry of the símplex allows the representation of compositions using orthogonal co-ordinares, to which usual statistical methods can be applied, thus facilating computation ans analysis. The use of (log) ratios precludes the interpretation of single concentrations disregarding their relative character. A hydro-chemical data set is used to illustrate the point
Resumo:
We generalize to arbitrary waiting-time distributions some results which were previously derived for discrete distributions. We show that for any two waiting-time distributions with the same mean delay time, that with higher dispersion will lead to a faster front. Experimental data on the speed of virus infections in a plaque are correctly explained by the theoretical predictions using a Gaussian delay-time distribution, which is more realistic for this system than the Dirac delta distribution considered previously [J. Fort and V. Méndez, Phys. Rev. Lett.89, 178101 (2002)]
Resumo:
The wave-of-advance model has been previously applied to Neolithic human range expansions, yielding good agreement to the speeds inferred from archaeological data. Here, we apply it for the first time to Palaeolithic human expansions by using reproduction and mobility parameters appropriate to hunter-gatherers (instead of the corresponding values for preindustrial farmers). The order of magnitude of the predicted speed is in agreement with that implied by the AMS radiocarbon dating of the lateglacial human recolonization of northern Europe (14.2–12.5 kyr BP). We argue that this makes it implausible for climate change to have limited the speed of the recolonization front. It is pointed out that a similar value for the speed can be tentatively inferred from the archaeological data on the expansion of modern humans into the Levant and Europe (42–36 kyr BP)
Resumo:
Recently, it has been shown that the speed of virus infections can be explained by time-delayed reactiondiffusion [J. Fort and V. Me´ndez, Phys. Rev. Lett. 89, 178101 (2002)], but no analytical solutions were found. Here we derive formulas for the front speed, valid in appropriate limits. We also integrate numerically the evolution equations of the system. There is good agreement with both numerical and experimental speeds
Resumo:
We deal with a system of prisoner’s dilemma players undergoing continuous motion in a two-dimensional plane. In contrast to previous work, we introduce altruistic punishment after the game. We find punishing only a few of the cooperator-defector interactions is enough to lead the system to a cooperative state in environments where otherwise defection would take over the population. This happens even with soft nonsocial punishment (where both cooperators and defectors punish other players, a behavior observed in many human populations). For high enough mobilities or temptations to defect, low rates of social punishment can no longer avoid the breakdown of cooperation
Resumo:
We introduce the effect of cohabitation between generations to a previous model on the slowdown of the Neolithic transition in Europe. This effect consists on the fact that human beings do not leave their children alone when they migrate, but on the contrary they cohabit until their children reach adulthood. We also use archaeological data to estimate the variation of the Mesolithic population density with distance, and use this information to predict the slowdown of the Neolithic front speed. The new equation leads to a substantial correction, up to 37%, relative to previous results. The new model is able to provide a satisfactory explanation not only to the relative speed but also to the absolute speed of the Neolithic front obtained from archaeological data
Resumo:
It is shown that Lotka-Volterra interaction terms are not appropriate to describe vertical cultural transmission. Appropriate interaction terms are derived and used to compute the effect of vertical cultural transmission on demic front propagation. They are also applied to a specific example, the Neolithic transition in Europe. In this example, it is found that the effect of vertical cultural transmission can be important (about 30%). On the other hand, simple models based on differential equations can lead to large errors (above 50%). Further physical, biophysical, and cross-disciplinary applications are outlined
Resumo:
The spread of viruses in growing plaques predicted by classical models is greater than that measured experimentally. There is a widespread belief that this discrepancy is due to biological factors. Here we show that the observed speeds can be satisfactorily predicted by a purely physical model that takes into account the delay time due to virus reproduction inside infected cells. No free or adjustable parameters are used
Resumo:
The environmental impact of landfill is a growing concern in waste management practices. Thus, assessing the effectiveness of the solutions implemented to alter the issue is of importance. The objectives of the study were to provide an insight of landfill advantages, and to consolidate landfill gas importance among others alternative fuels. Finally, a case study examining the performances of energy production from a land disposal at Ylivieska was carried out to ascertain the viability of waste to energy project. Both qualitative and quantitative methods were applied. The study was conducted in two parts; the first was the review of literatures focused on landfill gas developments. Specific considerations were the conception of mechanism governing the variability of gas production and the investigation of mathematical models often used in landfill gas modeling. Furthermore, the analysis of two main distributed generation technologies used to generate energy from landfill was carried out. The review of literature revealed a high influence of waste segregation and high level of moisture content for waste stabilization process. It was found that the enhancement in accuracy for forecasting gas rate generation can be done with both mathematical modeling and field test measurements. The result of the case study mainly indicated the close dependence of the power output with the landfill gas quality and the fuel inlet pressure.
Resumo:
The moisture sorption isotherms of Chilean papaya were determined at 5, 20, and 45 ºC, over a relative humidity range of 10-95%. The GAB, BET, Oswin, Halsey, Henderson, Smith, Caurie and Iglesias-Chirife models were applied to the sorption experimental data. The goodness of fit of the mathematical models was statistically evaluated by means of the determination coefficient, mean relative percentage deviation, sum square error, root-mean-square error, and chi-square values. The GAB, Oswin and Halsey models were found to be the most suitable for the description of the sorption data. The sorption heats calculated using the Clausius-Clapeyron equation were 57.35 and 59.98 kJ·mol-1, for adsorption and desorption isotherms, respectively.
Resumo:
Mathematical models can help to prevent high levels of toxic substances in soil or fruits of plants treated with pesticides and indicate that such substances should be systematically monitored. The aim of this research was to study the kinetics of paclobutrazol biodegradation by soil native bacteria using mathematical models. Three models were used to assess the kinetics of paclobutrazol biodegradation obtained experimentally. Excellent fits were obtained using dual kinetic and logistic models. The use of glycerol as additional carbon source increased the biodegradation of PBZ and consequently decreased the time required for a given PBZ initial concentration be halved.
Resumo:
Tämä työ tehdään Steveco Oy:lle sataman operatiivisen toiminnan aiheuttamien kulujen ja tuottojen seurantaan. Työssä käsitellään automaattisen liikevaihdon laskennan ongelmia ja ratkaisuja. Työssä sivutaan myös työajanseurannan sosiaalisia vaikutuksia työntekijöihin, sekä esitetään keinoja ongelmatilanteiden välttämiseksi. Työn tuottavuuden mittaamiseksi on kehitetty matemaattisia malleja, joita voidaan soveltaa organisaatiossa työtehojen mittaamiseksi. Työssä esitellään näitä malleja sekä pohditaan niiden soveltamista. Työssä esitetään malli automaattiseen liikevaihdon ja kulujen laskentaan sekä siihen liittyviä teknisiä ratkaisuja. Työn lopussa todetaan että automaattinen liikevaihdon ja kulujen seurantajärjestelmä on mahdollista rakentaa ja tuloksessa päästään hyvin tarkkaan arvioon lopullisesta liikevaihdosta. Arvion tarkkuus riippuu operatiivisten järjestelmien käyttötavoista sekä työnohjauksen menettelytavoista.
Resumo:
The maximum realizable power throughput of power electronic converters may be limited or constrained by technical or economical considerations. One solution to this problemis to connect several power converter units in parallel. The parallel connection can be used to increase the current carrying capacity of the overall system beyond the ratings of individual power converter units. Thus, it is possible to use several lower-power converter units, produced in large quantities, as building blocks to construct high-power converters in a modular manner. High-power converters realized by using parallel connection are needed for example in multimegawatt wind power generation systems. Parallel connection of power converter units is also required in emerging applications such as photovoltaic and fuel cell power conversion. The parallel operation of power converter units is not, however, problem free. This is because parallel-operating units are subject to overcurrent stresses, which are caused by unequal load current sharing or currents that flow between the units. Commonly, the term ’circulatingcurrent’ is used to describe both the unequal load current sharing and the currents flowing between the units. Circulating currents, again, are caused by component tolerances and asynchronous operation of the parallel units. Parallel-operating units are also subject to stresses caused by unequal thermal stress distribution. Both of these problemscan, nevertheless, be handled with a proper circulating current control. To design an effective circulating current control system, we need information about circulating current dynamics. The dynamics of the circulating currents can be investigated by developing appropriate mathematical models. In this dissertation, circulating current models aredeveloped for two different types of parallel two-level three-phase inverter configurations. Themodels, which are developed for an arbitrary number of parallel units, provide a framework for analyzing circulating current generation mechanisms and developing circulating current control systems. In addition to developing circulating current models, modulation of parallel inverters is considered. It is illustrated that depending on the parallel inverter configuration and the modulation method applied, common-mode circulating currents may be excited as a consequence of the differential-mode circulating current control. To prevent the common-mode circulating currents that are caused by the modulation, a dual modulator method is introduced. The dual modulator basically consists of two independently operating modulators, the outputs of which eventually constitute the switching commands of the inverter. The two independently operating modulators are referred to as primary and secondary modulators. In its intended usage, the same voltage vector is fed to the primary modulators of each parallel unit, and the inputs of the secondary modulators are obtained from the circulating current controllers. To ensure that voltage commands obtained from the circulating current controllers are realizable, it must be guaranteed that the inverter is not driven into saturation by the primary modulator. The inverter saturation can be prevented by limiting the inputs of the primary and secondary modulators. Because of this, also a limitation algorithm is proposed. The operation of both the proposed dual modulator and the limitation algorithm is verified experimentally.
Resumo:
Mathematical models often contain parameters that need to be calibrated from measured data. The emergence of efficient Markov Chain Monte Carlo (MCMC) methods has made the Bayesian approach a standard tool in quantifying the uncertainty in the parameters. With MCMC, the parameter estimation problem can be solved in a fully statistical manner, and the whole distribution of the parameters can be explored, instead of obtaining point estimates and using, e.g., Gaussian approximations. In this thesis, MCMC methods are applied to parameter estimation problems in chemical reaction engineering, population ecology, and climate modeling. Motivated by the climate model experiments, the methods are developed further to make them more suitable for problems where the model is computationally intensive. After the parameters are estimated, one can start to use the model for various tasks. Two such tasks are studied in this thesis: optimal design of experiments, where the task is to design the next measurements so that the parameter uncertainty is minimized, and model-based optimization, where a model-based quantity, such as the product yield in a chemical reaction model, is optimized. In this thesis, novel ways to perform these tasks are developed, based on the output of MCMC parameter estimation. A separate topic is dynamical state estimation, where the task is to estimate the dynamically changing model state, instead of static parameters. For example, in numerical weather prediction, an estimate of the state of the atmosphere must constantly be updated based on the recently obtained measurements. In this thesis, a novel hybrid state estimation method is developed, which combines elements from deterministic and random sampling methods.