371 resultados para Inbreeding.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O género Equus teve origem na América do Norte e alguns exemplares migraram para a Eurásia pelo Estreito de Bering, durante a última glaciação. No fim da glaciação, todos os cavalos do continente americano extinguiram-se, mas sobreviveram nas estepes da Eurásia, na Peninsula lbérica e nas florestas da Europa Ocidental e Central. O cavalo Lusitano teve a sua origem em cavalos selvagens e domesticados da Peninsula lbérica, ocorrendo uma mistura com outros animais trazidos por eventos migratórios ocorridos no passado. Os cavalos deste gene pool contribuiram para o desenvolvimento de outras raças modernas na Europa e foram mais tarde introduzidos e dispersos pelo continente Americano, tornando-se fundadores de numerosas raças do novo mundo. A raça Lusitana é uma raça equina autóctone portuguesa, com especial relevancia económica no panorama nacional e internacional. Apesar de não ser uma raça ameaçada, alguns autores defendem que a informação genealógica disponivel (pedigrees) indica que uma utilização excessiva de um reduzido número de reprodutores machos esta a diminuir a diversidade genética da raça, tendo como consequência o aumento da consanguinidade e a diminuição do tamanho efetivo da população para cerca de metade dos valores recomendados pela FAO. No entanto, a anàlise da diversidade genética com base em 16 microssatélites (Marcadores de DNA) a um grupo de 2699 machos da raça Lusitana, nascidos entre 1985 e 2010 e inscritos como reprodutores no Livro Genealógico da raça, revelou um elevado nível de diversidade, idêntico ao encontrado na maioria das raças equinas. Dada a crescente relevância da Crioconservação, omo estratégia complementar para a conservação da diversidade genética in situ, e tendo em conta que não existe criopreservação de oocitos, embriões ou sémen, do cavalo de raça Lusitana em Banco de Genes, selecionaram-se 62 machos reprodutores (garanhões) com interesse genético para a criopreservação de sémen, quer no sentido de preservar a diversidade da raça quer no da salvaguardar em caso de calamidade; ABSTRACT: The genus Equus originated in North America and some exemplary migrated to Eurasia through the Bering Strait during the last glaciation. By the end of the last glaciation, all horses on the American continent became extinct but the genus survived in the steppes of Eurasia, in the Iberian Peninsula and on the Central and West Europe forests. The Lusitano horse breed has its origins in wild and domesticated horses of the Iberian Peninsula, where a mixture with other animals brought by migratory events in the past occurred. The horses of this gene pool contributed to the development of other modern breeds in Europe and were later introduced and spread throughout the American continent, becoming founders of numerous breeds of the New World. The Lusitano horse breed, is a Portuguese native equine breed, with special economic relevance in the national and international scene. Although not being an endangered breed, some authors argue that the available genealogical information (pedigrees) indicates that an excessive use of a limited number of stallions is decreasing the genetic diversity of the breed, resulting in the increase of inbreeding and on the decrease of the effective population size to about half of the values recommended by FAO. However, the analysis of genetic diversity based on 16 microsatellites (DNA markers) in a group of 2699 males of the Lusitano horse breed, born between 1985 and 2010 and registered as Stallions in the Studbook, revealed a high level of diversity similar to that found in the majority of equine breeds. Given the growing relevance of Cryopreservation as a complementary strategy for the conservation of genetic diversity in situ and, taking into consideration the inexistence of criopreservation for oocytes, embryos and semen, in a Gene Bank, for the Lusitano horse breed, 62 breeding males (stallions) with genetic interest for semen cryopreservation were selected in order either to preserve the diversity of the breed or as safeguard in case of calamity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little information is available on the patterns of genetic connectivity in owls. We studied the genetic structure of the eagle owl Bubo bubo (Linnaeus, 1758) in southeastern Spain at two different spatial scales. Seven microsatellites previously described for this species were used, although only six loci amplified correctly. The observed low genetic variation could be explained by the short dispersal distance, high mortality rate and high degree of monogamy shown by this large nocturnal predator. As expected, the highest genetic isolation was detected in the geographically most isolated population. Significant genetic differentiation was found among study units separated by less than 50 km. The territorial analysis showed interesting connectivity patterns related with the gene flow and turnover rate of the breeding individuals. The lowest genetic diversity was found in the region with the largest population, which could imply incipient inbreeding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human exploitation has drastically reduced the abundance and distribution of several marine fish and invertebrate populations through overfishing and habitat destruction. Restocking can potentially mitigate these impacts and help to reconstitute depleted stocks but genetic repercussions must be considered. In the present study, the degree of genetic similarity between white seabream (Diplodus sargus Linnaeus 1758) individuals reared for restocking purposes and the receiving population in the Gulf of Castellammare fishery reserve (Sicily, Italy) was assessed using microsatellites. We also inferred the spatial pattern of the genetic structure of D. sargus and connectivity along Sicilian coasts. The farmed population showed significant heterozygosity deficiency in 6 loci and an important reduction in the number of alleles, which could indicate an incipient inbreeding. Both the farmed population and the target one for restocking (Castellammare fishery reserve), showed high and significant values of genetic differentiation due to different allele frequencies, number of privative alleles and total number of alleles. These findings indicate a low degree of genetic similarity between both populations, therefore this restocking initiative is not advisable. The genetic connectivity pattern, highly consistent with oceanographic currents, identified two distinct metapopulations of white seabream around Sicily. Thus it is recommended to utilize broods from the same metapopulation for restocking purposes to provide a better genetic match to the wild populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estimates of effective population size in the Holstein cattle breed have usually been low despite the large number of animals that constitute this breed. Effective population size is inversely related to the rates at which coancestry and inbreeding increase and these rates have been high as a consequence of intense and accurate selection. Traditionally, coancestry and inbreeding coefficients have been calculated from pedigree data. However, the development of genome-wide single nucleotide polymorphisms has increased the interest of calculating these coefficients from molecular data in order to improve their accuracy. In this study, genomic estimates of coancestry, inbreeding and effective population size were obtained in the Spanish Holstein population and then compared with pedigree-based estimates. A total of 11,135 animals genotyped with the Illumina BovineSNP50 BeadChip were available for the study. After applying filtering criteria, the final genomic dataset included 36,693 autosomal SNPs and 10,569 animals. Pedigree data from those genotyped animals included 31,203 animals. These individuals represented only the last five generations in order to homogenise the amount of pedigree information across animals. Genomic estimates of coancestry and inbreeding were obtained from identity by descent segments (coancestry) or runs of homozygosity (inbreeding). The results indicate that the percentage of variance of pedigree-based coancestry estimates explained by genomic coancestry estimates was higher than that for inbreeding. Estimates of effective population size obtained from genome-wide and pedigree information were consistent and ranged from about 66 to 79. These low values emphasize the need of controlling the rate of increase of coancestry and inbreeding in Holstein selection programmes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The population dynamics of island species are considered particularly sensitive to variation in environmental, demographic and/or genetic processes. However, few studies have attempted to evaluate the relative importance of these processes for key vital rates in island endemics. We integrated the results of long-term capture–mark–recapture analysis, prey surveys, habitat quality assessments and molecular analysis to determine the causes of variation in the survival rates of Komodo dragons Varanus komodoensis at 10 sites on four islands in Komodo National Park, Indonesia. Using open population capture–mark–recapture methods, we ranked competing models that considered environmental, ecological, genetic and demographic effects on site-specific Komodo dragon survival rates. Site-specific survival rates ranged from 0.49 (95% CI: 0.33–0.68) to 0.92 (0.79–0.97) in the 10 study sites. The three highest-ranked models (i.e. ΔQAICc < 2) explained ∼70% of variation in Komodo dragon survival rates and identified interactions between inbreeding coefficients, prey biomass density and habitat quality as important explanatory variables. There was evidence of additive effects from ecological and genetic (e.g. inbreeding) processes affecting Komodo dragon survival rates. Our results indicate that maintaining high ungulate prey biomass and habitat quality would enhance the persistence of Komodo dragon populations. Assisted gene flow may also increase the genetic and demographic viability of the smaller Komodo dragon populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forest trees, like oaks, rely on high levels of genetic variation to adapt to varying environmental conditions. Thus, genetic variation and its distribution are important for the long-term survival and adaptability of oak populations. Climate change is projected to lead to increased drought and fire events as well as a northward migration of tree species, including oaks. Additionally, decline in oak regeneration has become increasingly concerning since it may lead to decreased gene flow and increased inbreeding levels. This will in turn lead to lowered levels of genetic diversity, negatively affecting the growth and survival of populations. At the same time, populations at the species’ distribution edge, like those in this study, could possess important stores of genetic diversity and adaptive potential, while also being vulnerable to climatic or anthropogenic changes. A survey of the level and distribution of genetic variation and identification of potentially adaptive genes is needed since adaptive genetic variation is essential for their long-term survival. Oaks possess a remarkable characteristic in that they maintain their species identity and specific environmental adaptations despite their propensity to hybridize. Thus, in the face of interspecific gene flow, some areas of the genome remain differentiated due to selection. This characteristic allows the study of local environmental adaptation through genetic variation analyses. Furthermore, using genic markers with known putative functions makes it possible to link those differentiated markers to potential adaptive traits (e.g., flowering time, drought stress tolerance). Demographic processes like gene flow and genetic drift also play an important role in how genes (including adaptive genes) are maintained or spread. These processes are influenced by disturbances, both natural and anthropogenic. An examination of how genetic variation is geographically distributed can display how these genetic processes and geographical disturbances influence genetic variation patterns. For example, the spatial clustering of closely related trees could promote inbreeding with associated negative effects (inbreeding depression), if gene flow is limited. In turn this can have negative consequences for a species’ ability to adapt to changing environmental conditions. In contrast, interspecific hybridization may also allow the transfer of genes between species that increase their adaptive potential in a changing environment. I have studied the ecologically divergent, interfertile red oaks, Quercus rubra and Q. ellipsoidalis, to identify genes with potential roles in adaptation to abiotic stress through traits such as drought tolerance and flowering time, and to assess the level and distribution of genetic variation. I found evidence for moderate gene flow between the two species and low interspecific genetic differences at most genetic markers (Lind and Gailing 2013). However, the screening of genic markers with potential roles in phenology and drought tolerance led to the identification of a CONSTANS-like (COL) gene, a candidate gene for flowering time and growth. This marker, located in the coding region of the gene, was highly differentiated between the two species in multiple geographical areas, despite interspecific gene flow, and may play a role in reproductive isolation and adaptive divergence between the two species (Lind-Riehl et al. 2014). Since climate change could result in a northward migration of trees species like oaks, this gene could be important in maintaining species identity despite increased contact zones between species (e.g., increased gene flow). Finally I examined differences in spatial genetic structure (SGS) and genetic variation between species and populations subjected to different management strategies and natural disturbances. Diverse management activities combined with various natural disturbances as well as species specific life history traits influenced SGS patterns and inbreeding levels (Lind-Riehl and Gailing submitted).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rare plant conservation efforts must utilize current genetic methods to ensure the evolutionary potential of populations is preserved. One such effort involves the Key Tree Cactus, Pilosocereus robinii, which is an endangered columnar cactus native to the Florida Keys. The populations have precipitously declined over the past decade because of habitat loss and increasing soil salinity from rising sea levels and storm surge. Next-generation DNA sequencing was used to assess the genetic structure of the populations. Twenty individuals representative of both wild and extirpated cacti were chosen for Restriction Site Associated DNA (RAD) analysis. Samples processed using the HindIII and NotIII restriction enzymes produced 82,382,440 high quality reads used for genetic mapping, from which 5,265 Single Nucleotide Polymorphisms (SNPs) were discovered. The analysis revealed that the Keys’ populations are closely related with little population differentiation. In addition, the populations display evidence of inbreeding and low genetic diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Glenelg spiny freshwater crayfish Euastacus bispinosus is a large endangered freshwater invertebrate of southeastern Australia that has suffered major population declines over the last century. Disjunct populations in the state of South Australia are in a particularly critical condition, restricted to a few isolated rising-spring habitats and in an ongoing state of decline. We assessed genetic diversity and gene flow within E. bispinosus across its current range using allele frequencies from 11 nuclear microsatellite loci and DNA sequence data from a single mitochon -drial locus (cytochrome oxidase subunit I). Populations were characterized by low levels of genetic diversity and found to be highly structured, with gene flow restricted both within and across catchments, highlighting the species' vulnerability to further habitat fragmentation and the importance of managing environmental threats on local scales across its current natural range. South Australian populations were characterized by critically low levels of genetic diversity generally, highlighting their potential vulnerability to localized extinction. Holistic conservation efforts are necessary to conserve populations, including local habitat management and, potentially, translocations to increase genetic diversity and evolutionary potential, and reduce possible inbreeding effects and the threat of extinction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Glenelg spiny crayfish, Euastacus bispinosus, is an iconic freshwater invertebrate of south eastern Australia and listed as 'endangered' under the Environment Protection and Biodiversity Conservation Act 1999, and 'vulnerable' under the International Union for Conservation of Nature's Red List. The species has suffered major population declines as a result of over-fishing, low environmental flows, the introduction of invasive fish species and habitat degradation. In order to develop an effective conservation strategy, patterns of gene flow, genetic structure and genetic diversity across the species distribution need to be clearly understood. In this study we develop a suite of polymorphic microsatellite markers by next generation sequencing. A total of 15 polymorphic loci were identified and 10 characterized using 22 individuals from the lower Glenelg River. We observed low to moderate genetic variation across most loci (mean number of alleles per locus = 2.80; mean expected heterozygosity = 0.36) with no evidence of individual loci deviating significantly from Hardy-Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. Individuals from two additional sites (Crawford River, Victoria; Ewens Ponds Conservation Park, South Australia) were genotyped at all 10 loci and a preliminary investigation of genetic diversity and population structure was undertaken. Analyses indicate high levels of genetic differentiation among sample locations (F ST = 0.49), while the Ewens Ponds population is genetically homogeneous, indicating a likely small founder group and ongoing inbreeding. Management actions will be needed to restore genetic diversity in this and possibly other at risk populations. These markers will provide a valuable resource for future population genetic assessments so that an effective framework can be developed for implementing conservation strategies for E. bispinosus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assessment of genetic diversity and connectivity between regions can inform conservation managers about risk of inbreeding, potential for adaptation and where population boundaries lie. The Gouldian finch (Erythrura gouldiae) is a threatened species in northern Australia, occupying the savannah woodlands of the biogeographically complex monsoon tropics. We present the most comprehensive population genetic analysis of diversity and structure the Gouldian finch using 16 microsatellite markers, mitochondrial control region and 3,389 SNPs from genotyping-by-sequencing. Mitochondrial diversity is compared across three related, co-distributed finches with different conservation threat-statuses. There was no evidence of genetic differentiation across the western part of the range in any of the molecular markers, and haplotype diversity but not richness was lower than a common co-distributed species. Individuals within the panmictic population in the west may be highly dispersive within this wide area, and we urge caution when interpreting anecdotal observations of changes to the distribution and/or flock sizes of Gouldian finch populations as evidence of overall changes to the population size of this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water buffaloes (Bubalus bubalis) are quite well adapted to climatic conditions in the Amazon, and in this biome, they are noted for the considerable amount of meat and milk they produce and how hard they are able to work. Because of a lack of research dedicated to improving the rearing of buffaloes in the Amazon, the objective of this study was to genetically characterize the Murrah and Mediterranean breeds, as well as a mixed-breed population, based on polymorphisms in the diacylglycerol O-acyltransferase 1 gene (DGAT1), and associate the genotypes with milk production. By using the polymerase chain reaction-single-strand conformation polymorphism technique, the alleles A (0.79), B (0.20), and D (0.01) were found in the Murrah breed. In the Mediterranean and mixed-breed buffaloes, we found alleles A (0.69) and (0.77) and B (0.31) and (0.23), respectively. The Murrah breed had the genotypes AA (0.63), AB (0.29), BB (0.05), and AD (0.03), and the Mediterranean and mixed-breed buffaloes had the genotypes AA (0.44) and (0.61), AB (0.50) and (0.31), and BB (0.06) and (0.08), respectively. For the Murrah, Mediterranean, and mixedbreed buffaloes, respectively, the expected heterozygosity values were 0.34, 0.43, and 0.35, the inbreeding coefficients were 0.78, -0.15, and 0.17, and the Hardy-Weinberg probabilities were 0.70, 0.67, and 0.52. The genotypes evaluated did not have an effect on milk production; however, the single nucleotide polymorphisms can be used in studies on genetic variability.