984 resultados para Immune-responses
Resumo:
Infants born to HIV-infected mothers are at high risk of becoming infected during gestation or the breastfeeding period. A search is thus warranted for vaccine formulations that will prevent mother-to-child HIV transmission. The LAMP/gag DNA chimeric vaccine encodes the HIV-1 p55gag fused to the lysosome-associated membrane protein-1 (LAMP-1) and has been shown to enhance anti-Gag antibody (Ab) and cellular immune responses in adult and neonatal mice; such a vaccine represents a new concept in antigen presentation. In this study, we evaluated the effect of LAMP/gag DNA immunization on neonates either before conception or during pregnancy. LAMP/gag immunization of BALB/c mice before conception by the intradermal route led to the transfer of anti-Gag IgG1 Ab through the placenta and via breastfeeding. Furthermore, there were an increased percentage of CD4+ CD25+ Foxp3+ T cells in the spleens of neonates. When offspring were immunized with LAMP/gag DNA, the anti-Gag Ab response and the Gag-specific IFN-gamma-secreting cells were decreased. Inhibition of anti-Gag Ab production and cellular responses were not observed six months after immunization, indicating that maternal immunization did not interfere with the long-lasting memory response in offspring. Injection of purified IgG in conjunction with LAMP/gag DNA immunization decreased humoral and cytotoxic T-cell responses. LAMP/gag DNA immunization by intradermal injection prior to conception promoted the transfer of Ab, leading to a diminished response to Gag without interfering with the development of anti-Gag T- and B-cell memory. Finally, we assessed responses after one intravenous injection of LAMP/gag DNA during the last five days of pregnancy. The intravenous injection led to in utero immunization. In conclusion, DNA vaccine enconding LAMP-1 with Gag and other HIV-1 antigens should be considered in the development of a protective vaccine for the maternal/fetal and newborn periods.
Resumo:
Salmonellosis is one of the most prevalent foodborne diseases worldwide. Food animals have been identified as reservoirs for nontyphoid Salmonella infections. in poultry, host-specific Salmonella infections cause fowl typhoid and pullorum diseases that produce economic losses in different parts of the world. Several measures have been used to prevent and control Salmonella infections in poultry, and vaccination is the most practical measure because it avoids contamination of poultry products and by-products and prevents disease in humans. Salmonella vaccines can decrease public health risk by reducing colonization and organ invasion, including invasion of reproductive tissues, and by diminishing fecal shedding and environmental contamination. We review available information on the host-specific and non-host-specific Salmonella serotypes found in poultry and the improved understanding of the pathogenesis of and immune responses to infection. We also include some approaches based on updated publications regarding killed and live attenuated vaccines and their immune mechanisms of protection.
Resumo:
Objective Immune responses against differentiated thyroid carcinomas (DTC) have long been recognized. We aimed to investigate the role of immune cell infiltration in the progression of DTC. Design We studied 398 patients 253 with papillary and 13 with follicular thyroid cancers, as well as 132 with nonmalignant tissues. Patients and measurements Immune cell infiltration was identified using CD3, CD4, CD8, CD20, CD68 and FoxP3 immunohistochemical markers. In addition, we assessed colocalization of CD4 and IL-17 to identify Th17 lymphocytic infiltration and colocalization of CD33 and CD11b to identify infiltration of myeloid-derived suppressor cells (MDSC). Results Immune cells infiltrated malignant tissues more often than benign lesions. The presence of chronic lymphocytic thyroiditis (CLT) concurrent to DTC, CD68+, CD4+, CD8+, CD20+, FoxP3+ and Th17 lymphocytes but not MDSCs was associated with clinical and pathological features of lower tumour aggressiveness and a more favourable patient outcome. A log-rank test confirmed an association between concurrent CLT, tumour-associated macrophage infiltration, and CD8+ lymphocytes and an increased in disease-free survival, suggesting that evidence of these immune reactions is associated with a favourable prognosis. Conclusion Our data suggest that the tumour or peri-tumoural microenvironment may act to modify the observed pattern of immune response. Immune cell infiltration and the presence of concurrent CLT helped characterize specific tumour histotypes associated with favourable prognostic features.
Resumo:
Food intake and nutritional status modify the physiological responses of the immune system to illness and infection and regulate the development of chronic inflammatory processes, such as kidney disease. Adipose tissue secretes immune-related proteins called adipokines that have pleiotropic effects on both the immune and neuroendocrine systems, linking metabolism and immune physiology. Leptin, an adipose tissue-derived adipokine, displays a variety of immune and physiological functions, and participates in several immune responses. Here, we review the current literature on the role of leptin in kidney diseases, linking adipose tissue and the immune system with kidney-related disorders. The modulation of this adipose hormone may have a major impact on the treatment of several immune- and metabolic-related kidney diseases.
Resumo:
The innate and adaptive immune responses in neonates are usually functionally impaired when compared with their adult counterparts. The qualitative and quantitative differences in the neonatal immune response put them at risk for the development of bacterial and viral infections, resulting in increased mortality. Newborns often exhibit decreased production of Th1-polarizing cytokines and are biased toward Th2-type responses. Studies aimed at understanding the plasticity of the immune response in the neonatal and early infant periods or that seek to improve neonatal innate immune function with adjuvants or special formulations are crucial for preventing the infectious disease burden in this susceptible group. Considerable studies focused on identifying potential immunomodulatory therapies have been performed in murine models. This article highlights the strategies used in the emerging field of immunomodulation in bacterial and viral pathogens, focusing on preclinical studies carried out in animal models with particular emphasis on neonatal-specific immune deficits.
Resumo:
Prenatal immune challenge (PIC) in pregnant rodents produces offspring with abnormalities in behavior, histology, and gene expression that are reminiscent of schizophrenia and autism. Based on this, the goal of this article was to review the main contributions of PIC models, especially the one using the viral-mimetic particle polyriboinosinic-polyribocytidylic acid (poly-I:C), to the understanding of the etiology, biological basis and treatment of schizophrenia. This systematic review consisted of a search of available web databases (PubMed, SciELO, LILACS, PsycINFO, and ISI Web of Knowledge) for original studies published in the last 10 years (May 2001 to October 2011) concerning animal models of PIC, focusing on those using poly-I:C. The results showed that the PIC model with poly-I:C is able to mimic the prodrome and both the positive and negative/cognitive dimensions of schizophrenia, depending on the specific gestation time window of the immune challenge. The model resembles the neurobiology and etiology of schizophrenia and has good predictive value. In conclusion, this model is a robust tool for the identification of novel molecular targets during prenatal life, adolescence and adulthood that might contribute to the development of preventive and/or treatment strategies (targeting specific symptoms, i.e., positive or negative/cognitive) for this devastating mental disorder, also presenting biosafety as compared to viral infection models. One limitation of this model is the incapacity to model the full spectrum of immune responses normally induced by viral exposure.
Resumo:
Protective immunity against Plasmodium falciparum may be obtained after repeated exposure to infection. Several studies indicate that immunity against the blood stages of the P. Falciparum infection is mainly antibody mediated. Protective antibodies may act either on their own, mediate antibody-dependent phagocytosis and/or cell-mediated neutralization of parasites. This thesis describes several aspects of humoral immune responses to P. falciparum infection in individuals of different age groups, different genetic background and with different degrees of malaria exposure. Several target antigens for antibody-mediated inhibition of parasite growth or invasion have been identified. One such antigen is Pf332, which appears on the surface of parasitized erythrocytes at late trophozoite and schizont stage. This surface exposure makes the antigen a possible target for opsonizing antibodies. We optimized an in vitro assay for studying cellmediated parasite neutralization in the presence of Pf332-reactive antibodies. Our data demonstrate that, Pf332 specific antibodies are able to inhibit parasite growth on their own and in cooperation with human monocytes. The P. falciparum parasites have evolved several mechanisms to evade the host neutralizing immune responses. In this thesis, we show that freshly isolated P. falciparum parasites from children living in a malaria endemic area of Burkina Faso were less sensitive for growth inhibition in vitro by autologous immunoglobulins (Ig) compared with heterologous ones. Analyses of two consecutive isolates taken 14 days apart, with regard to genotypes and sensitivity to growth inhibition in vitro, did not give any clear-cut indications on possible mechanisms leading to a reduced inhibitory activity in autologous parasite/antibody combinations. The frequent presence of persisting parasite clones in asymptomatic children indicates that the parasite possesses as yet undefined mechanisms to evade neutralizing immune responses. Transmission reducing measures such insecticide treated nets (ITNs) have been shown to be effective in reducing morbidity and mortality from malaria. However, concerns have been raised that ITNs usage could affect the acquisition of malaria immunity. We studied the effect of the use of insecticide treated curtains (ITC) on anti-malarial immune responses of children living in villages with ITC since birth. The use of ITC did neither affect the levels of parasite neutralizing immune responses nor the multiplicity of infection. These results indicate that the use of ITC does not interfere with the acquisition of anti-malarial immunity in children living in a malaria hyperendemic area. There is substantial evidence that the African Fulani tribe is markedly less susceptible to malaria infection compared to other sympatrically living ethnic tribes. We investigated the isotypic humoral responses against P. falciparum asexual blood stages in different ethnic groups living in sympatry in two countries exhibiting different malaria transmission intensities, Burkina Faso and Mali. We observed higher levels of the total malaria-specific-IgG and its cytophilic subclasses in individuals of the Fulani tribe as compared to non-Fulani individuals. Fulani individuals also showed higher levels of antibodies to measles antigen, indicating that the intertribal differences are not specific for malaria and might reflect a generally activated immune system in the Fulani.
Resumo:
Tomato (Lycopersicon esculentum Mill., Solanum lycopersicon L.) is one of the most popular vegetable throughout the world, and the importance of its cultivation is threatened by a wide array of pathogens. In the last twenty years this plant has been successfully used as a model plant to investigate the induction of defense pathways after exposure to fungal, bacterial and abiotic molecules, showing triggering of different mechanisms of resistance. Understanding these mechanisms in order to improve crop protection is a main goal for Plant Pathology. The aim of this study was to search for general or race-specific molecules able to determine in Solanum lycopersicon immune responses attributable to the main systems of plant defense: non-host, host-specific and induced resistance. Exopolysaccharides extracted by three fungal species (Aureobasidium pullulans, Cryphonectria parasitica and Epicoccum purpurascens), were able to induce transcription of pathogenesis-related (PR) proteins and accumulation of enzymes related to defense in tomato plants cv Money Maker,using the chemical inducer Bion® as a positive control. During the thesis, several Pseudomonas spp. strains were also isolated and tested for their antimicrobial activity and ability to produce antibiotics. Using as a positive control jasmonic acid, one of the selected strain was shown to induce a form of systemic resistance in tomato. Transcription of PRs and reduction of disease severity against the leaf pathogen Pseduomonas syringae pv. tomato was determined in tomato plants cv Money Maker and cv Perfect Peel, ensuring no direct contact between the selected rhizobacteria and the aerial part of the plant. To conclude this work, race-specific resistance of tomato against the leaf mold Cladosporium fulvum is also deepened, describing the project followed at the Phytopathology Laboratory of Wageningen (NL) in 2007, dealing with localization of a specific R-Avr interaction in transfected tomato protoplast cultures through fluorescence microscopy.
Resumo:
Der Ausheilung von Infektionen mit Leishmania major liegt die Sekretion von IFN- von sowohl CD4+ als auch CD8+ T Zellen zugrunde.rnAktuell konnte in der Literatur nur ein Epitop aus dem parasitären LACK Protein für eine effektive CD4+ T Zell-vermittelte Immunantwort beschrieben werden. Das Ziel der vorliegenden Arbeit bestand daher darin, mögliche MHC I abhängige CD8+ T Zell Antworten zu untersuchen. rnFür diesen Ansatz wurde als erstes der Effekt einer Vakzinierung mit LACK Protein fusioniert an die Protein-Transduktionsdomäne des HIV-1 (TAT) analysiert. Die Effektivität von TAT-LACK gegenüber CD8+ T Zellen wurde mittels in vivo Protein-Vakzinierung von resistenten C57BL/6 Mäusen in Depletions-Experimenten gezeigt.rnDie Prozessierung von Proteinen vor der Präsentation immunogener Peptide gegenüber T Zellen ist unbedingt erforderlich. Daher wurde in dieser Arbeit die Rolle des IFN--induzierbaren Immunoproteasoms bei der Prozessierung von parasitären Proteinen und Präsentation von Peptiden gebunden an MHC I Moleküle durch in vivo und in vitro Experimente untersucht. Es konnte in dieser Arbeit eine Immunoproteasom-unabhängige Prozessierung aufgezeigt werden.rnWeiterhin wurde Parasitenlysat (SLA) von sowohl Promastigoten als auch Amastigoten fraktioniert. In weiterführenden Experimenten können diese Fraktionen auf immunodominante Proteine/Peptide hin untersucht werden. rnLetztlich wurden Epitop-Vorhersagen für CD8+ T Zellen mittels computergestützer Software von beiden parasitären Lebensformen durchgeführt. 300 dieser Epitope wurden synthetisiert und werden in weiterführenden Experimenten zur Charakterisierung immunogener Eigenschaften weiter verwendet. rnIn ihrer Gesamtheit trägt die vorliegende Arbeit wesentlich zum Verständnis über die komplexen Mechanismen der Prozessierung und letztendlich zur Identifikation von möglichen CD8+ T Zell Epitopen bei. Ein detailiertes Verständnis der Prozessierung von CD8+ T Zell Epitopen von Leishmania major über den MHC Klasse I Weg ist von höchster Bedeutung. Die Charakterisierung sowie die Identifikation dieser Peptide wird einen maßgeblichen Einfluss auf die weiteren Entwicklungen von Vakzinen gegen diesen bedeutenden human-pathogenen Parasiten mit sich bringen. rn
Resumo:
Die Suppression von autoreaktiven T-Zellen ist eine Funktion von CD4+CD25+ regulatorischen T-Zellen (CD4+CD25+ Tregs). CD4+CD25+ Tregs unterdrücken autoaggressive Immunantworten. Galectin-10 und Foxp3 sind wichtige Proteine, die an dem supprimierenden Mechanismus der Tregs beteiligt sind. Galectin-10 ist eines der ältesten bekannten humanen Proteine, die nicht in anderen Spezies gefunden worden sind. Foxp3 ist ein Transkriptionsfaktor, der in menschlichen CD4+CD25+ Tregs und in CD4+CD25- T-Effektor-Zellen nach Aktivierung exprimiert wird. Ein siRNA-vermittelter Knockdown dieses intrazellulären löslichen Proteins hebt die supprimierende Funktion der humanen CD4+CD25+ Tregs auf.rnDiese Arbeit beinhaltet in vitro durchgeführte Untersuchungen zur Ermöglichung eines Knockdown von Galectin-10 und/oder Foxp3 in humanisierten Mäusen. Es war möglich, ein Verfahren für die Produktion von lentiviralen Partikeln zu etablierten, die sich als effizientes Vehikel für den Gentransfer in humane Stammzellen und verschiedene Tumor- und Immunzellen erwiesen. Nach der Transduktion von AML14.3D10 Tumorzellen mit GFP-codierenden lentiviralen Partikeln konnte eine langfristige Expression von GFP erreicht werden. Außerdem war es möglich lentivirale Partikel zu erzeugen, die mit shRNA gegen Galectin-10 codiert waren. Die erzeugten Partikel erwiesen sich als funktionell, indem sie eine deutliche Herunterregulation von Galectin-10 in konstitutiv Galectin-10 exprimierenden AML14.3D10 Tumorzellen bewirkten. Unsere Studie präsentierte außerdem eine erstmalige Untersuchung zum Nachweis von Galectin-10-Protein in Eosinophilen aus humanen CD34+ hämatopoetischen Stammzellen (HSC). Diese stabile in vitro Galectin-10-Expression bietet ein alternatives Untersuchungsmodell zu CD4+CD25+ Tregs, die nicht aus CD34+ HSC differenziert werden können. Der zusätzliche Einbau des GFP-Gens in die mit shRNA gegen Galectin-10 codierende lentivirale Partikel war ein wichtiger Schritt zur Markierung von Zellen, die einen Galectin-10-Knockdown aufwiesen. Die neuen bicistronischen lentiviralen Partikel erwiesen sich sowohl in aus CD34+ HSC differenzierten Eosinophilen als auch in AML14.3D10 Zellen, die einen eosinophilen Phänotyp aufweisen, als funktionell. Schließlich konnte mit den bicistronischen lentiviralen Partikeln, die mit GFP und shRNA gegen Foxp3 codiert waren, eine Herunterregulation von Foxp3 in CD4+CD25- T-Effektor-Zellen erreicht werden, was erneut die erfolgreiche Herstellung von funktionellen lentiviralen Partikeln bewies.rn
Resumo:
Recognition of drugs by immune cells is usually explained by the hapten model, which states that endogenous metabolites bind irreversibly to protein to stimulate immune cells. Synthetic metabolites interact directly with protein-generating antigenic determinants for T cells; however, experimental evidence relating intracellular metabolism in immune cells and the generation of physiologically relevant Ags to functional immune responses is lacking. The aim of this study was to develop an integrated approach using animal and human experimental systems to characterize sulfamethoxazole (SMX) metabolism-derived antigenic protein adduct formation in immune cells and define the relationship among adduct formation, cell death, costimulatory signaling, and stimulation of a T cell response. Formation of SMX-derived adducts in APCs was dose and time dependent, detectable at nontoxic concentrations, and dependent on drug-metabolizing enzyme activity. Adduct formation above a threshold induced necrotic cell death, dendritic cell costimulatory molecule expression, and cytokine secretion. APCs cultured with SMX for 16 h, the time needed for drug metabolism, stimulated T cells from sensitized mice and lymphocytes and T cell clones from allergic patients. Enzyme inhibition decreased SMX-derived protein adduct formation and the T cell response. Dendritic cells cultured with SMX and adoptively transferred to recipient mice initiated an immune response; however, T cells were stimulated with adducts derived from SMX metabolism in APCs, not the parent drug. This study shows that APCs metabolize SMX; subsequent protein binding generates a functional T cell Ag. Adduct formation above a threshold stimulates cell death, which provides a maturation signal for dendritic cells.
Resumo:
Among synthetic vaccines, virus-like particles (VLPs) are used for their ability to induce strong humoral responses. Very little is reported on VLP-based-vaccine-induced CD4(+) T-cell responses, despite the requirement of helper T cells for antibody isotype switching. Further knowledge on helper T cells is also needed for optimization of CD8(+) T-cell vaccination. Here, we analysed human CD4(+) T-cell responses to vaccination with MelQbG10, which is a Qβ-VLP covalently linked to a long peptide derived from the melanoma self-antigen Melan-A. In all analysed patients, we found strong antibody responses of mainly IgG1 and IgG3 isotypes, and concomitant Th1-biased CD4(+) T-cell responses specific for Qβ. Although less strong, comparable B- and CD4(+) T-cell responses were also found specific for the Melan-A cargo peptide. Further optimization is required to shift the response more towards the cargo peptide. Nevertheless, the data demonstrate the high potential of VLPs for inducing humoral and cellular immune responses by mounting powerful CD4(+) T-cell help.
Resumo:
Mammals harbor a dense commensal microbiota in the colon. Regulatory T (Treg) cells are known to limit microbe-triggered intestinal inflammation and the CD4+ T cell compartment is shaped by the presence of particular microbes or bacterial compounds. It is, however, difficult to distinguish whether these effects reflect true mutualistic immune adaptation to intestinal colonization or rather idiosyncratic immune responses. To investigate truly mutualistic CD4+ T cell adaptation, we used the altered Schaedler flora (ASF). Intestinal colonization resulted in activation and de novo generation of colonic Treg cells. Failure to activate Treg cells resulted in the induction of T helper 17 (Th17) and Th1 cell responses, which was reversed by wild-type Treg cells. Efficient Treg cell induction was also required to maintain intestinal homeostasis upon dextran sulfate sodium-mediated damage in the colon. Thus, microbiota colonization-induced Treg cell responses are a fundamental intrinsic mechanism to induce and maintain host-intestinal microbial T cell mutualism.
Resumo:
Neuronal activity within the central nervous system (CNS) strictly depends on homeostasis and therefore does not tolerate uncontrolled entry of blood components. It has been generally believed that under normal conditions, the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) prevent immune cell entry into the CNS. This view has recently changed when it was realized that activated T cells are able to breach the BBB and the BCSFB to perform immune surveillance of the CNS. Here we propose that the immune privilege of the CNS is established by the specific morphological architecture of its borders resembling that of a medieval castle. The BBB and the BCSFB serve as the outer walls of the castle, which can be breached by activated immune cells serving as messengers for outside dangers. Having crossed the BBB or the BCSFB they reach the castle moat, namely the cerebrospinal fluid (CSF)-drained leptomeningeal and perivascular spaces of the CNS. Next to the CNS parenchyma, the castle moat is bordered by a second wall, the glia limitans, composed of astrocytic foot processes and a parenchymal basement membrane. Inside the castle, that is the CNS parenchyma proper, the royal family of sensitive neurons resides with their servants, the glial cells. Within the CSF-drained castle moat, macrophages serve as guards collecting all the information from within the castle, which they can present to the immune-surveying T cells. If in their communication with the castle moat macrophages, T cells recognize their specific antigen and see that the royal family is in danger, they will become activated and by opening doors in the outer wall of the castle allow the entry of additional immune cells into the castle moat. From there, immune cells may breach the inner castle wall with the aim to defend the castle inhabitants by eliminating the invading enemy. If the immune response by unknown mechanisms turns against self, that is the castle inhabitants, this may allow for continuous entry of immune cells into the castle and lead to the death of the castle inhabitants, and finally members of the royal family, the neurons. This review will summarize the molecular traffic signals known to allow immune cells to breach the outer and inner walls of the CNS castle moat and will highlight the importance of the CSF-drained castle moat in maintaining immune surveillance and in mounting immune responses in the CNS.
Resumo:
Cytomegalovirus (CMV) reactivation in the retina of immunocompromized patients is a cause of significant morbidity as it can lead to blindness. The adaptive immune response is critical in controlling murine CMV (MCMV) infection in MCMV-susceptible mouse strains. CD8(+) T cells limit systemic viral replication in the acute phase of infection and are essential to contain latent virus. In this study, we provide the first evaluation of the kinetics of anti-viral T-cell responses after subretinal infection with MCMV. The acute response was characterized by a rapid expansion phase, with infiltration of CD8(+) T cells into the infected retina, followed by a contraction phase. MCMV-specific T cells displayed biphasic kinetics with a first peak at day 12 and contraction by day 18 followed by sustained recruitment of these cells into the retina at later time points post-infection. MCMV-specific CD8(+) T cells were also observed in the draining cervical lymph nodes and the spleen. Presentation of viral epitopes and activation of CD8(+) T cells was widespread and could be detected in the spleen and the draining lymph nodes, but not in the retina or iris. Moreover, after intraocular infection, antigen-specific cytotoxic activity was detectable and exhibited kinetics equivalent to those observed after intraperitoneal infection with the same viral dose. These data provide novel insights of how and where immune responses are initiated when viral antigen is present in the subretinal space.