939 resultados para Immune Suppressors
Resumo:
Life-history traits and secondary sexual characters often demonstrate condition-dependence, and reproductive success thus ultimately appears to be determined by condition. Here we test the hypothesis that anti-parasite defence is condition-dependent and thus ultimately limits fitness. Animal hosts defend themselves against parasites by an efficient immune system that changes its activity level depending on level of infection. Since immune function is costly, as demonstrated by several field studies, we predicted that large immune defence organs should be maintained when the costs of an elevated immune response were reduced, or when the benefits were increased. Hence, the size of immune defence organs was predicted to increase in response to disease due to increased benefits of investment in immune function, and the; size was predicted to increase in response to high body condition because of reduced costs of investment in immune function. A comparative study of birds demonstrated that the size of the spleen was significantly increased among individuals suffering from parasitic infections and signs of disease as compared to healthy individuals. Furthermore, we found evidence for a positive association between spleen size and body condition. These findings are consistent with the hypothesised cost of immune function and hence a cost of anti-parasite defence.
Resumo:
IL-28 (IFN-λ) cytokines exhibit potent antiviral and antitumor function but their full spectrum of activities remains largely unknown. Recently, IL-28 cytokine family members were found to be profoundly down-regulated in allergic asthma. We now reveal a novel role of IL-28 cytokines in inducing type 1 immunity and protection from allergic airway disease. Treatment of wild-type mice with recombinant or adenovirally expressed IL-28A ameliorated allergic airway disease, suppressed Th2 and Th17 responses and induced IFN-γ. Moreover, abrogation of endogenous IL-28 cytokine function in IL-28Rα(-/-) mice exacerbated allergic airway inflammation by augmenting Th2 and Th17 responses, and IgE levels. Central to IL-28A immunoregulatory activity was its capacity to modulate lung CD11c(+) dendritic cell (DC) function to down-regulate OX40L, up-regulate IL-12p70 and promote Th1 differentiation. Consistently, IL-28A-mediated protection was absent in IFN-γ(-/-) mice or after IL-12 neutralization and could be adoptively transferred by IL-28A-treated CD11c(+) cells. These data demonstrate a critical role of IL-28 cytokines in controlling T cell responses in vivo through the modulation of lung CD11c(+) DC function in experimental allergic asthma. →See accompanying Closeup by Michael R Edwards and Sebastian L Johnston http://dx.doi.org/10.1002/emmm.201100143.
Resumo:
Recent evidence indicates that B cells are required for susceptibility to infection with Leishmania major in BALB/c mice. In this study, we analyzed the role of the IL-10 produced by B cells in this process. We showed that B cells purified from the spleen of BALB/c mice produced IL-10 in response to stimulation with L. major in vitro. In vivo, early IL-10 mRNA expression is detected after L. major infection in B cells from draining lymph nodes of susceptible BALB/c, but not of resistant C57BL/6 mice. Although adoptive transfer of naive wild-type B cells prior to infection in B cell-deficient BALB/c mice restored Th2 cell development and susceptibility to infection with L. major of these otherwise resistant mice, adoptive transfer of IL-10(-/-) B cells mice did not. B cells stimulated by L. major, following in vitro or in vivo encounter, express the CD1d and CD5 molecules and the IL-10 produced by these cells downregulate IL-12 production by L. major-stimulated dendritic cells. These observations indicate that IL-10 secreting B cells are phenotypically and functionally regulatory B cells. Altogether these results demonstrate that the IL-10 produced by regulatory CD1d+ CD5+ B cells in response to L. major is critical for Th2 cell development in BALB/c mice.
Resumo:
Although evidence is accumulating that mothers can transfer antibodies to their offspring, little is known about the consequences of such a transfer to the offspring immune system. Because maternal antibodies are effective only during a short period of time after their transfer to offspring, one hypothesis is that maternal antibodies provides a transitory antigen-specific protection to offspring, thus lessening the need for offspring to mount their own humoral immune response towards these specific antigens. In birds, this scenario predicts that offspring immune response towards a specific antigen is inhibited to a larger extent in hatchlings than in older nestlings. We tested this hypothesis in tawny owls Strix aluco by cross-fostering clutches between nests and then challenging siblings with a vaccine either two times (at 4- and 11-d-old) or only one time at 11-d-old to compare the strength of the humoral response between nestlings born from mothers with naturally high and low levels of antibodies against this vaccine. Because maternal antibodies are expected to be effective only during a short period of time after hatching, we predict that maternal antibodies should inhibit the immune response of nestlings vaccinated from the fourth day after hatching more than in nestlings vaccinated only at a later age. As expected, the inhibitory effect of maternal antibodies was stronger in nestlings vaccinated soon after hatching than in siblings injected at a later age. Therefore, in wild avian populations pre-hatching maternal effects may confer offspring with a transitory immune protection in the first days following hatching.
Resumo:
Group 3 innate lymphoid cells (ILC3s) have emerged as important cellular players in tissue repair and innate immunity. Whether these cells meaningfully regulate adaptive immune responses upon activation has yet to be explored. Here we show that upon IL-1β stimulation, peripheral ILC3s become activated, secrete cytokines, up-regulate surface MHC class II molecules, and express costimulatory molecules. ILC3s can take up latex beads, process protein antigen, and consequently prime CD4(+) T-cell responses in vitro. The cognate interaction of ILC3s and CD4(+) T cells leads to T-cell proliferation both in vitro and in vivo, whereas its disruption impairs specific T-cell and T-dependent B-cell responses in vivo. In addition, the ILC3-CD4(+) T-cell interaction is bidirectional and leads to the activation of ILC3s. Taken together, our data reveal a novel activation-dependent function of peripheral ILC3s in eliciting cognate CD4(+) T-cell immune responses.
Resumo:
Nestling birds produced later in the season are hypothesized to be of poor quality with a low probability of survival and recruitment. In a Spanish population of house martins (Delichon urbica), we first compared reproductive success, immune responses and morphological traits between the first and the second broods. Second, we investigated the effects of an ectoparasite treatment and breeding date on the recapture rate the following year. Due probably to a reverse situation in weather conditions during the experiment, with more rain during rearing of the first brood, nestlings reared during the second brood were in better condition and had stronger immune responses compared with nestlings from the first brood. Contrary to other findings on house martins, we found a similar recapture rate for chicks reared during the first and the second brood. Furthermore, ectoparasitic house martin bugs had no significant effect on the recapture rate. Recaptured birds had similar morphology but higher immunoglobulin levels when nestlings compared with non-recaptured birds. This result implies that a measure of immune function is a better predictor of survival than body condition per se.
Resumo:
Malignant melanoma accounts for most of the increasing mortality from skin cancer. Melanoma cells were found to express Fas (also called Apo-1 or CD95) ligand (FasL). In metastatic lesions, Fas-expressing T cell infiltrates were proximal to FasL+ tumor cells. In vitro, apoptosis of Fas-sensitive target cells occurred upon incubation with melanoma tumor cells; and in vivo, injection of FasL+ mouse melanoma cells in mice led to rapid tumor formation. In contrast, tumorigenesis was delayed in Fas-deficient lpr mutant mice in which immune effector cells cannot be killed by FasL. Thus, FasL may contribute to the immune privilege of tumors.
Resumo:
PURPOSE OF REVIEW: Definition of T cell immune correlates in HIV infection remains a lofty goal towards our understanding of the HIV-specific immune response. This review will focus upon recent developments and controversies in our understanding of protective T cell responses against HIV. RECENT FINDINGS: It has become clear that multiple functions and phenotypic markers of T cells must be assessed to accurately characterize the complexity of CD4 and CD8 T cell responses. While evidence indicates that a hallmark of protective immune responses in HIV infection is the presence of 'polyfunctional' T cell responses, a disconnect remains between the function and phenotype of effective HIV-specific T cells. Moreover, there may be inherent differences in the ability of specific human leukocyte antigen class I families to promote CD8 T cell effector versus polyfunctional responses. It remains to be determined how polyfunctional responses arise in HIV infection, which functions are important for control, and whether surface phenotype markers provide an indication of protective capacity. SUMMARY: Polyfunctional and phenotypic assessment of T cell responses have clearly advanced our understanding of HIV specific immune responses. Critical questions remain, however, especially whether polyfunctional T cell responses control, or are controlled by, HIV replication.
Resumo:
OBJECTIVE: To investigate the merits of vaccination against hepatitis B virus (HBV) in HIV-positive individuals with isolated antibodies to hepatitis B core antigen (anti-HBc). METHODS: HIV-positive patients with isolated anti-HBc and CD4 counts >200 cells/mm(3) received HBV vaccination. An antibody titre to hepatitis B surface antigen (anti-HBs titres) ≥10 IU/L one month post-vaccination was termed an anamnestic response; a titre <10 IU/L was termed a primary response. Patients with primary responses received a 3-dose vaccine course. Anti-HBs titres in all responders were measured 12 and 24 months post-vaccination. RESULTS: 37 patients were studied: 19 (51%) were co-infected with hepatitis C; median CD4 count was 443 cells/mm(3). 8/37 patients (22%) elicited an anamnestic response. 29/37 patients (78%) elicited a primary response. After a 3-dose vaccine course, 15/25 primary responders (60%) achieved anti-HBs titres ≥10 IU/L. HIV acquisition through injecting drug use was the only independent predictor of an anamnestic response (OR 22.9, CI 1.71-306.74, P=0.018). Median anti-HBs titres for anamnestic and primary responders were 51 IU/L (13-127) and 157 IU/L (25-650) respectively. Of all responders, 12/23 (52%) retained anti-HBs titres ≥10 IU/L at 24 months. Anti-HBs duration was not significantly different between anamnestic and primary responders. CONCLUSIONS: 23/37 HIV-positive patients (62%) with isolated anti-HBc achieved anti-HBs titres ≥10 IU/L after 1-3 vaccine doses. However, duration of this immune response was short-lived (
Resumo:
Mating can affect female immunity in multiple ways. On the one hand, the immune system may be activated by pathogens transmitted during mating, sperm and seminal proteins, or wounds inflicted by males. On the other hand, immune defences may also be down-regulated to reallocate resources to reproduction. Ants are interesting models to study post-mating immune regulation because queens mate early in life, store sperm for many years, and use it until their death many years later, while males typically die after mating. This long-term commitment between queens and their mates limits the opportunity for sexual conflict but raises the new constraint of long-term sperm survival. In this study, we examine experimentally the effect of mating on immunity in wood ant queens. Specifically, we compared the phenoloxidase and antibacterial activities of mated and virgin Formica paralugubris queens. Queens had reduced levels of active phenoloxidase after mating, but elevated antibacterial activity 7 days after mating. These results indicate that the process of mating, dealation and ovary activation triggers dynamic patterns of immune regulation in ant queens that probably reflect functional responses to mating and pathogen exposure that are independent of sexual conflict.
Resumo:
Generating an anti-tumor immune response is a multi-step process that is executed by effector T cells that can recognize and kill tumor targets. However, tumors employ multiple strategies to attenuate the effectiveness of T-cell-mediated attack. They achieve this by interfering with nearly every step required for effective immunity, from deregulation of antigen-presenting cells to establishment of a physical barrier at the vasculature that prevents homing of effector tumor-rejecting cells and the suppression of effector lymphocytes through the recruitment and activation of immunosuppressive cells such as myeloid-derived suppressor cells, tolerogenic monocytes, and T regulatory cells. Here, we review the ways in which tumors exert immune suppression and highlight the new therapies that seek to reverse this phenomenon and promote anti-tumor immunity. Understanding anti-tumor immunity, and how it becomes disabled by tumors, will ultimately lead to improved immune therapies and prolonged survival of patients.
Resumo:
Superantigens of mouse mammary tumor virus induce a strong cognate interaction between T cells and B cells. In addition to amplifying the virus-infected B-cell pool, this superantigen-driven interaction leads to the differentiation of virus-specific B cells into plasma cells. Successful interaction between T cells and B cells is required for completion of the viral life cycle.
Resumo:
OBJECTIVE: To study the causes for the lack of clinical progression in a superinfected HIV-1 LTNP elite controller patient.¦METHODOLOGY AND PRINCIPAL FINDINGS: We studied host genetic, virological and immunological factors associated with viral control in a SI long term non progressor elite controller (LTNP-EC). The individual contained both viruses and maintained undetectable viral loads for >20 years and he did not express any of the described host genetic polymorphisms associated with viral control. None of four full-length gp160 recombinants derived from the LTNP-EC replicated in heterologous peripheral blood mononuclear cells. CTL responses after SI were maintained in two samples separated by 9 years and they were higher in breadth and magnitude than responses seen in most of 250 treatment naïve patients and also 25 controller subjects. The LTNP-EC showed a neutralization response, against 4 of the 6 viruses analyzed, superior to other ECs.¦CONCLUSIONS: The study demonstrated that a strong and sustained cellular and humoral immune response and low replicating viruses are associated with viral control in the superinfected LTNP-EC.
Resumo:
The murine model of infection with Leishmania major has allowed the demonstration of a causal relationship between, on the one hand, genetically determined resistance to infection and the development of a Th1 CD4+ cell response, and on the other hand, genetically determined susceptibility and Th2 cell maturation. Using this murine model of infection, the role of cytokines in directing the functional differentiation pathway of CD4+ T cell precursors, has been demonstrated in vivo. Thus, IL-12 and IFN-gamma have been shown to favour Th1 cell development and IL-4 is crucial for the differentiation of Th2 responses. Maturation of a Th2 response in susceptible BALB/c mice following infection with L. major is triggered by the IL-4 produced during the first two days after parasite inoculation. This IL-4 rapidly renders parasite specific CD4+ T cells precursors unresponsive to IL-12. A restricted population of CD4+ T cells expressing the V beta 4V alpha 8 TCR heterodimer and recognizing a single epitope on the LACK (Leishmania Activated C-Kinase) antigen of L. major is responsible for this rapid production of IL-4, instructing subsequent differentiation towards the Th2 phenotype of CD4+ T cells specific for several parasite antigens.
Resumo:
A host genetic variant (-35C/T) correlates with increased human leukocyte antigen C (HLA-C) expression and improved control of HIV-1. HLA-C-mediated immunity may be particularly protective because HIV-1 is unable to remove HLA-C from the cell surface, whereas it can avoid HLA-A- and HLA-B-mediated immunity by Nef-mediated down-modulation. However, some individuals with the protective -35CC genotype exhibit high viral loads. Here, we investigated whether the ability of HIV-1 to replicate efficiently in the "protective" high-HLA-C-expression host environment correlates with specific functional properties of Nef. We found that high set point viral loads (sVLs) were not associated with the emergence of Nef variants that had acquired the ability to down-modulate HLA-C or were more effective in removing HLA-A and HLA-B from the cell surface. However, in individuals with the protective -35CC genotype we found a significant association between sVLs and the efficiency of Nef-mediated enhancement of virion infectivity and modulation of CD4, CD28, and the major histocompatibility complex class II (MHC-II)-associated invariant chain (Ii), while this was not observed in subjects with the -35TT genotype. Since the latter Nef functions all influence the stimulation of CD4(+) T helper cells by antigen-presenting cells, they may cooperate to affect both the activation status of infected T cells and the generation of an antiviral cytotoxic T-lymphocyte (CTL) response. In comparison, different levels of viremia in individuals with the common -35TT genotype were not associated with differences in Nef function but with differences in HLA-C mRNA expression levels. Thus, while high HLA-C expression may generally facilitate control of HIV-1, Nef may counteract HLA-C-mediated immune control in some individuals indirectly, by manipulating T-cell function and MHC-II antigen presentation.