996 resultados para Image orientation
Resumo:
In medical imaging, merging automated segmentations obtained from multiple atlases has become a standard practice for improving the accuracy. In this letter, we propose two new fusion methods: "Global Weighted Shape-Based Averaging" (GWSBA) and "Local Weighted Shape-Based Averaging" (LWSBA). These methods extend the well known Shape-Based Averaging (SBA) by additionally incorporating the similarity information between the reference (i.e., atlas) images and the target image to be segmented. We also propose a new spatially-varying similarity-weighted neighborhood prior model, and an edge-preserving smoothness term that can be used with many of the existing fusion methods. We first present our new Markov Random Field (MRF) based fusion framework that models the above mentioned information. The proposed methods are evaluated in the context of segmentation of lymph nodes in the head and neck 3D CT images, and they resulted in more accurate segmentations compared to the existing SBA.
The role of energetic value in dynamic brain response adaptation during repeated food image viewing.
Resumo:
The repeated presentation of simple objects as well as biologically salient objects can cause the adaptation of behavioral and neural responses during the visual categorization of these objects. Mechanisms of response adaptation during repeated food viewing are of particular interest for better understanding food intake beyond energetic needs. Here, we measured visual evoked potentials (VEPs) and conducted neural source estimations to initial and repeated presentations of high-energy and low-energy foods as well as non-food images. The results of our study show that the behavioral and neural responses to food and food-related objects are not uniformly affected by repetition. While the repetition of images displaying low-energy foods and non-food modulated VEPs as well as their underlying neural sources and increased behavioral categorization accuracy, the responses to high-energy images remained largely invariant between initial and repeated encounters. Brain mechanisms when viewing images of high-energy foods thus appear less susceptible to repetition effects than responses to low-energy and non-food images. This finding is likely related to the superior reward value of high-energy foods and might be one reason why in particular high-energetic foods are indulged although potentially leading to detrimental health consequences.
Resumo:
We present a novel filtering method for multispectral satellite image classification. The proposed method learns a set of spatial filters that maximize class separability of binary support vector machine (SVM) through a gradient descent approach. Regularization issues are discussed in detail and a Frobenius-norm regularization is proposed to efficiently exclude uninformative filters coefficients. Experiments carried out on multiclass one-against-all classification and target detection show the capabilities of the learned spatial filters.
Resumo:
The Orientation Center newsletter is produced three times a year, and includes articles written by students, staff, and former students. It also contains news about what is happening to other students who have been in the Center.
Resumo:
The Orientation Center newsletter is produced three times a year, and includes articles written by students, staff, and former students. It also contains news about what is happening to other students who have been in the Center.
Resumo:
The Orientation Center newsletter is produced three times a year, and includes articles written by students, staff, and former students. It also contains news about what is happening to other students who have been in the Center.
Resumo:
The Orientation Center newsletter is produced three times a year, and includes articles written by students, staff, and former students. It also contains news about what is happening to other students who have been in the Center.
Resumo:
Iterative image reconstruction algorithms provide significant improvements over traditional filtered back projection in computed tomography (CT). Clinically available through recent advances in modern CT technology, iterative reconstruction enhances image quality through cyclical image calculation, suppressing image noise and artifacts, particularly blooming artifacts. The advantages of iterative reconstruction are apparent in traditionally challenging cases-for example, in obese patients, those with significant artery calcification, or those with coronary artery stents. In addition, as clinical use of CT has grown, so have concerns over ionizing radiation associated with CT examinations. Through noise reduction, iterative reconstruction has been shown to permit radiation dose reduction while preserving diagnostic image quality. This approach is becoming increasingly attractive as the routine use of CT for pediatric and repeated follow-up evaluation grows ever more common. Cardiovascular CT in particular, with its focus on detailed structural and functional analyses, stands to benefit greatly from the promising iterative solutions that are readily available.
Resumo:
Measurement of arterial input function is a restrictive aspect for quantitative (18)F-FDG PET studies in rodents because of their small total blood volume and the related difficulties in withdrawing blood.
Resumo:
In many European countries, image quality for digital x-ray systems used in screening mammography is currently specified using a threshold-detail detectability method. This is a two-part study that proposes an alternative method based on calculated detectability for a model observer: the first part of the work presents a characterization of the systems. Eleven digital mammography systems were included in the study; four computed radiography (CR) systems, and a group of seven digital radiography (DR) detectors, composed of three amorphous selenium-based detectors, three caesium iodide scintillator systems and a silicon wafer-based photon counting system. The technical parameters assessed included the system response curve, detector uniformity error, pre-sampling modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE). Approximate quantum noise limited exposure range was examined using a separation of noise sources based upon standard deviation. Noise separation showed that electronic noise was the dominant noise at low detector air kerma for three systems; the remaining systems showed quantum noise limited behaviour between 12.5 and 380 µGy. Greater variation in detector MTF was found for the DR group compared to the CR systems; MTF at 5 mm(-1) varied from 0.08 to 0.23 for the CR detectors against a range of 0.16-0.64 for the DR units. The needle CR detector had a higher MTF, lower NNPS and higher DQE at 5 mm(-1) than the powder CR phosphors. DQE at 5 mm(-1) ranged from 0.02 to 0.20 for the CR systems, while DQE at 5 mm(-1) for the DR group ranged from 0.04 to 0.41, indicating higher DQE for the DR detectors and needle CR system than for the powder CR phosphor systems. The technical evaluation section of the study showed that the digital mammography systems were well set up and exhibiting typical performance for the detector technology employed in the respective systems.
Resumo:
O trauma crânio-encefálico contuso (TCEC) é freqüentemente seguido pela amnésia pós-traumática (APT), caracterizada como um estado transitório de confusão e desorientação. Sua duração tem sido utilizada para quantificar a gravidade do TCEC e prever distúrbios nas funções cognitivas, assim como para antever as alterações na capacidade funcional das vítimas pós-trauma. O Galveston Orientation Amnesia Test (GOAT) é o primeiro instrumento sistematizado criado e o mais amplamente utilizado para avaliar a APT. Este artigo apresenta esse instrumento, as bases conceituais para seu desenvolvimento e a adaptação e validação do GOAT para cultura brasileira. Além disso, descreve sua aplicação e comenta as restrições do seu uso. Resultados de pesquisas realizadas em nosso meio contribuíram para as evidências sobre a validade do GOAT. Também apontaram os indicadores do momento pós-trauma em que o GOAT deve ser aplicado e destacaram as dificuldades no uso desse instrumento.
Resumo:
White-light cystoscopy and cytology are the standard tools to diagnose bladder cancer. White-light cystoscopy is excellent to detect macroscopic exophytic tumors, but its sensitivity is poor for flat tumors such as carcinoma in situ. Use of fluorescence cystoscopy during transurethral bladder resection improve tumor detection, particulary for carcinoma in situ. Fluorescence cystoscopy reduce residual tumor rate, especially for voluminous and multifocal tumors with consecutive lower recurrence. Fluorescence is now recommended to diagnose and treat bladder cancer.