952 resultados para Image Classification
Resumo:
Arteriovenous fistula involving renal artery and inferior vena cava are rare. We report the case of a 47-year-old woman with a chronic arteriovenous fistula between right renal artery and inferior vena cava due to a penetrating trauma. Another finding was a vena cava aneurysm caused by the fistula. The patient was successfully treated with a covered stent in the renal artery. Diagnosis and postoperative control have been documented with CT scan. Endovascular techniques may be effective and minimally invasive option for treatment and renal preservation in renal-cava arteriovenous fistulae.
Resumo:
Objective: To investigate the possible role of chromatin texture parameters, nuclear morphology, DNA ploidy and clinical functional status in discriminating benign from malignant adrenocortical tumors (ACT). Patients and Methods: Forty-eight cases of clinically benign (n=40) and clinically malignant (n=8) ACT with a minimum of 5-years` follow-up were evaluated for chromatin texture parameters (run length, standard deviation, configurable run length, valley, slope, peak and other 21 Markovian features that describe the distribution of the chromatin in the nucleus), nuclear morphology (nuclear area, nuclear perimeter, nuclear maximum and minumum diameter, nuclear shape), and DNA ploidy. Nuclear parameters were evaluated in Feulgen-stained 5 mu m paraffin-sections analyzed using a CAS 200 image analyzer. Results: Since ACTs present different biological features in children and adults, patients were divided into two groups: children (<= 15 years) and adults (>15 years). In the group of children DNA ploidy presented a marginal significance (p=0.05) in discriminating ACTs. None of the parameters discriminated between malignant and benign ACT in the adult group. Conclusion: ACTs are uncommon and definitive predictive criteria for malignancy remain uncertain, particularly in children. Our data point to DNA content evaluated by image analysis as a new candidate tool for this challenging task. Texture image analysis did not help to differentiate malignant from benign adrenal cortical tumors in children and adults.
Resumo:
The aim of a clinical classification of pulmonary hypertension (PH) is to group together different manifestations of disease sharing similarities in pathophysiologic mechanisms, clinical presentation, and therapeutic approaches. In 2003, during the 3rd World Symposium on Pulmonary Hypertension, the clinical classification of PH initially adopted in 1998 during the 2nd World Symposium was slightly modified. During the 4th World Symposium held in 2008, it was decided to maintain the general architecture and philosophy of the previous clinical classifications. The modifications adopted during this meeting principally concern Group 1, pulmonary arterial hypertension (PAH). This subgroup includes patients with PAH with a family history or patients with idiopathic PAH with germline mutations (e. g., bone morphogenetic protein receptor-2, activin receptor-like kinase type 1, and endoglin). In the new classification, schistosomiasis and chronic hemolytic anemia appear as separate entities in the subgroup of PAH associated with identified diseases. Finally, it was decided to place pulmonary venoocclusive disease and pulmonary capillary hemangiomatosis in a separate group, distinct from but very close to Group 1 (now called Group 1`). Thus, Group 1 of PAH is now more homogeneous. (J Am Coll Cardiol 2009;54:S43-54) (C) 2009 by the American College of Cardiology Foundation
Resumo:
Background-Prasugrel is a novel thienopyridine that reduces new or recurrent myocardial infarctions (MIs) compared with clopidogrel in patients with acute coronary syndrome undergoing percutaneous coronary intervention. This effect must be balanced against an increased bleeding risk. We aimed to characterize the effect of prasugrel with respect to the type, size, and timing of MI using the universal classification of MI. Methods and Results-We studied 13 608 patients with acute coronary syndrome undergoing percutaneous coronary intervention randomized to prasugrel or clopidogrel and treated for 6 to 15 months in the Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition With Prasugrel-Thrombolysis in Myocardial Infarction (TRITON-TIMI 38). Each MI underwent supplemental classification as spontaneous, secondary, or sudden cardiac death (types 1, 2, and 3) or procedure related (Types 4 and 5) and examined events occurring early and after 30 days. Prasugrel significantly reduced the overall risk of MI (7.4% versus 9.7%; hazard ratio [HR], 0.76; 95% confidence interval [CI], 0.67 to 0.85; P < 0.0001). This benefit was present for procedure-related MIs (4.9% versus 6.4%; HR, 0.76; 95% CI, 0.66 to 0.88; P = 0.0002) and nonprocedural (type 1, 2, or 3) MIs (2.8% versus 3.7%; HR, 0.72; 95% CI, 0.59 to 0.88; P = 0.0013) and consistently across MI size, including MIs with a biomarker peak >= 5 times the reference limit (HR. 0.74; 95% CI, 0.64 to 0.86; P = 0.0001). In landmark analyses starting at 30 days, patients treated with prasugrel had a lower risk of any MI (2.9% versus 3.7%; HR, 0.77; P = 0.014), including nonprocedural MI (2.3% versus 3.1%; HR, 0.74; 95% CI, 0.60 to 0.92; P = 0.0069). Conclusion-Treatment with prasugrel compared with clopidogrel for up to 15 months in patients with acute coronary syndrome undergoing percutaneous coronary intervention significantly reduces the risk of MIs that are procedure related and spontaneous and those that are small and large, including new MIs occurring during maintenance therapy. (Circulation. 2009; 119: 2758-2764.)
Resumo:
Cryoablative therapies have been proposed to palliate pain from soft-tissue or osteolytic bone tumors. A case of a patient with painful thoracic and sacral spine sclerotic metastases successfully treated by image-guided percutaneous cryoablation with the aid of insulation techniques and thermosensors is reported in this case report.
Resumo:
Radiation dose calculations in nuclear medicine depend on quantification of activity via planar and/or tomographic imaging methods. However, both methods have inherent limitations, and the accuracy of activity estimates varies with object size, background levels, and other variables. The goal of this study was to evaluate the limitations of quantitative imaging with planar and single photon emission computed tomography (SPECT) approaches, with a focus on activity quantification for use in calculating absorbed dose estimates for normal organs and tumors. To do this we studied a series of phantoms of varying complexity of geometry, with three radionuclides whose decay schemes varied from simple to complex. Four aqueous concentrations of (99m)Tc, (131)I, and (111)In (74, 185, 370, and 740 kBq mL(-1)) were placed in spheres of four different sizes in a water-filled phantom, with three different levels of activity in the surrounding water. Planar and SPECT images of the phantoms were obtained on a modern SPECT/computed tomography (CT) system. These radionuclides and concentration/background studies were repeated using a cardiac phantom and a modified torso phantom with liver and ""tumor"" regions containing the radionuclide concentrations and with the same varying background levels. Planar quantification was performed using the geometric mean approach, with attenuation correction (AC), and with and without scatter corrections (SC and NSC). SPECT images were reconstructed using attenuation maps (AM) for AC; scatter windows were used to perform SC during image reconstruction. For spherical sources with corrected data, good accuracy was observed (generally within +/- 10% of known values) for the largest sphere (11.5 mL) and for both planar and SPECT methods with (99m)Tc and (131)I, but were poorest and deviated from known values for smaller objects, most notably for (111)In. SPECT quantification was affected by the partial volume effect in smaller objects and generally showed larger errors than the planar results in these cases for all radionuclides. For the cardiac phantom, results were the most accurate of all of the experiments for all radionuclides. Background subtraction was an important factor influencing these results. The contribution of scattered photons was important in quantification with (131)I; if scatter was not accounted for, activity tended to be overestimated using planar quantification methods. For the torso phantom experiments, results show a clear underestimation of activity when compared to previous experiment with spherical sources for all radionuclides. Despite some variations that were observed as the level of background increased, the SPECT results were more consistent across different activity concentrations. Planar or SPECT quantification on state-of-the-art gamma cameras with appropriate quantitative processing can provide accuracies of better than 10% for large objects and modest target-to-background concentrations; however when smaller objects are used, in the presence of higher background, and for nuclides with more complex decay schemes, SPECT quantification methods generally produce better results. Health Phys. 99(5):688-701; 2010
Resumo:
The present work is a report of the characterization of superparamagnetic iron oxide nanoparticles coated with silicone used as a contrast agent in magnetic resonance imaging of the gastrointestinal tract. The hydrodynamic size of the contrast agent is 281.2 rim, where it was determined by transmission electron microscopy and a Fe(3)O(4) crystalline structure was identified by X-ray diffraction, also confirmed by Mossbauer Spectroscopy. The blocking temperature of 190 K was determined from magnetic measurements based on the Zero Field Cooled and Field Cooled methods. The hysteresis loops were measured at different temperatures below and above the blocking temperature. Ferromagnetic resonance analysis indicated the superparamagnetic nature of the nanoparticles and a strong temperature dependence of the peak-to-peak linewidth Delta H(pp), giromagnetic factor g, number of spins N(S) and relaxation time T(2) were observed. This behavior can be attributed to an increase in the superexchange interaction.
Resumo:
OBJECTIVE To examine cortical thickness and volumetric changes in the cortex of patients with polymicrogyria, using an automated image analysis algorithm. METHODS Cortical thickness of patients with polymicrogyria was measured using magnetic resonance imaging (MRI) cortical surface-based analysis and compared with age-and sex-matched healthy subjects. We studied 3 patients with disorder of cortical development (DCD), classified as polymicrogyria, and 15 controls. Two experienced neuroradiologists performed a conventional visual assessment of the MRIs. The same data were analyzed using an automated algorithm for tissue segmentation and classification. Group and individual average maps of cortical thickness differences were produced by cortical surface-based statistical analysis. RESULTS Patients with polymicrogyria showed increased thickness of the cortex in the same areas identified as abnormal by radiologists. We also identified a reduction in the volume and thickness of cortex within additional areas of apparently normal cortex relative to controls. CONCLUSIONS Our findings indicate that there may be regions of reduced cortical thickness, which appear normal from radiological analysis, in the cortex of patients with polymicrogyria. This finding suggests that alterations in neuronal migration may have an impact in the cortical formation of the cortical areas that are visually normal. These areas are associated or occur concurrently with polymicrogyria.
Resumo:
Here, we examine morphological changes in cortical thickness of patients with Alzheimer`s disease (AD) using image analysis algorithms for brain structure segmentation and study automatic classification of AD patients using cortical and volumetric data. Cortical thickness of AD patients (n = 14) was measured using MRI cortical surface-based analysis and compared with healthy subjects (n = 20). Data was analyzed using an automated algorithm for tissue segmentation and classification. A Support Vector Machine (SVM) was applied over the volumetric measurements of subcortical and cortical structures to separate AD patients from controls. The group analysis showed cortical thickness reduction in the superior temporal lobe, parahippocampal gyrus, and enthorhinal cortex in both hemispheres. We also found cortical thinning in the isthmus of cingulate gyrus and middle temporal gyrus at the right hemisphere, as well as a reduction of the cortical mantle in areas previously shown to be associated with AD. We also confirmed that automatic classification algorithms (SVM) could be helpful to distinguish AD patients from healthy controls. Moreover, the same areas implicated in the pathogenesis of AD were the main parameters driving the classification algorithm. While the patient sample used in this study was relatively small, we expect that using a database of regional volumes derived from MRI scans of a large number of subjects will increase the SVM power of AD patient identification.
Resumo:
Background: Although various techniques have been used for breast conservation surgery reconstruction, there are few studies describing a logical approach to reconstruction of these defects. The objectives of this study were to establish a classification system for partial breast defects and to develop a reconstructive algorithm. Methods: The authors reviewed a 7-year experience with 209 immediate breast conservation surgery reconstructions. Mean follow-up was 31 months. Type I defects include tissue resection in smaller breasts (bra size A/B), including type IA, which involves minimal defects that do not cause distortion; type III, which involves moderate defects that cause moderate distortion; and type IC, which involves large defects that cause significant deformities. Type II includes tissue resection in medium-sized breasts with or without ptosis (bra size C), and type III includes tissue resection in large breasts with ptosis (bra size D). Results: Eighteen percent of patients presented type I, where a lateral thoracodorsal flap and a latissimus dorsi flap were performed in 68 percent. Forty-five percent presented type II defects, where bilateral mastopexy was performed in 52 percent. Thirty-seven percent of patients presented type III distortion, where bilateral reduction mammaplasty was performed in 67 percent. Thirty-five percent of patients presented complications, and most were minor. Conclusions: An algorithm based on breast size in relation to tumor location and extension of resection can be followed to determine the best approach to reconstruction. The authors` results have demonstrated that the complications were similar to those in other clinical series. Success depends on patient selection, coordinated planning with the oncologic surgeon, and careful intraoperative management.
Resumo:
The traditional methods employed to detect atherosclerotic lesions allow for the identification of lesions; however, they do not provide specific characterization of the lesion`s biochemistry. Currently, Raman spectroscopy techniques are widely used as a characterization method for unknown substances, which makes this technique very important for detecting atherosclerotic lesions. The spectral interpretation is based on the analysis of frequency peaks present in the signal; however, spectra obtained from the same substance can show peaks slightly different and these differences make difficult the creation of an automatic method for spectral signal analysis. This paper presents a signal analysis method based on a clustering technique that allows for the classification of spectra as well as the inference of a diagnosis about the arterial wall condition. The objective is to develop a computational tool that is able to create clusters of spectra according to the arterial wall state and, after data collection, to allow for the classification of a specific spectrum into its correct cluster.
Resumo:
Optical diagnostic methods, such as near-infrared Raman spectroscopy allow quantification and evaluation of human affecting diseases, which could be useful in identifying and diagnosing atherosclerosis in coronary arteries. The goal of the present work is to apply Independent Component Analysis (ICA) for data reduction and feature extraction of Raman spectra and to perform the Mahalanobis distance for group classification according to histopathology, obtaining feasible diagnostic information to detect atheromatous plaque. An 830nm Ti:sapphire laser pumped by an argon laser provides near-infrared excitation. A spectrograph disperses light scattered from arterial tissues over a liquid-nitrogen cooled CCD to detect the Raman spectra. A total of 111 spectra from arterial fragments were utilized.