431 resultados para Ichthyology.
Resumo:
Amyloodinium ocellatum, a frequently encountered parasite in marine aquaculture, was investigated to determine if infective dinospore stages could be transported in aerosol droplets. We used an in vivo model incorporating static and dynamic airflow systems and found dinospores of A. ocellatum could travel in aerosol droplets (up to 440 turn in a static system and up to 3 m in a dynamic one). This is the first record of this transmission pathway for a marine protozoan parasite. It is possible that other marine protozoans can transfer via the aerobiological pathway. Management of A. ocellatum infections in aquaculture facilities could be affected, particularly where tanks and ponds are situated in close proximity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effects of dredging on the benthic communities in the Noosa River, a subtropical estuary in SE Queensland, Australia, were examined using a 'Beyond BACF experimental design. Changes in the numbers and types of animals and characteristics of the sediments in response to dredging in the coarse sandy sediments near the mouth of the estuary were compared with those occurring naturally in two control regions. Samples were collected twice before and twice after the dredging operations, at multiple spatial scales, ranging from metres to kilometres. Significant effects from the dredging were detected on the abundance of some polychaetes and bivalves and two measures of diversity (numbers of polychaete families and total taxonomic richness). In addition, the dredging caused a significant increase in the diversity of sediment particle sizes found in the dredged region compared with elsewhere. Community composition in the dredged region was more similar to that in the control regions after dredging than before. Changes in the characteristics of the sedimentary environment as a result of the dredging appeared to lead to the benthic communities of the dredged region becoming more similar to those elsewhere in the estuary, so dredging in this system may have led to the loss or reduction in area of a specific type of habitat in the estuary with implications for overall patterns of biodiversity and ecosystem function. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Ecologists continue to wrestle with a central question in biodiversity studies — the prediction of species’ distributions in various environments. A merger of different theories is the long-term prospect.
Resumo:
Blooms of Lyngbya majuscula have been increasingly recorded in the waters of Moreton Bay, on the south-east coast of Queensland, Australia. The influences of these blooms on sediment infauna and the implications for sediment biogeochemical processes was studied. Sediment samples were taken from Moreton Bay banks during and after the bloom season. The deposition of L. majuscula seems to be responsible for the higher total Kjedahl nitrogen (TKN) concentrations measured during the bloom period. Total organic carbon (TOC) concentrations did not change. Lyngbya majuscula blooms had a marked influence on the meiobenthos. Nematodes, copepods and polychaetes were the most abundant groups of meiofauna, and the bloom produced a decrease in the abundance and a change in the sediment depth distribution of these organisms. The distribution of nematodes, copepods and polychaetes in sediment became shallower. Further, the bloom did not affect the abundance and distribution of polychaetes as strongly as it did copepods and nematodes. The changes observed in the distribution of meiofauna in the sediment during the bloom period indicate that L. majuscula produces oxygen depletion in sediments, and that different fauna seem to be affected to different degrees.
Resumo:
The parasite community of animals is generally influenced by host physiology, ecology, and phylogeny. Therefore, sympatric and phylogenetically related hosts with similar ecologies should have similar parasite communities. To test this hypothesis we surveyed the endoparasites of 5 closely related cheilinine fishes (Labridae) from the Great Barrier Reef. They were Cheilinus chlorounts, C. trilobatus, C. fasciatils, Epibulus insidiator and OxYcheilinus diagrainnia. VVe examined the relationship between parasitological variables (richness, abundance and diversity) and host characteristics (bodv weight, diet and phuylogeny). The 5 fishes had 31 parasite species with 9-18 parasite species per fish species. Cestode larvae (mostly Tetraphyllidea) were the most abundant and prevalent parasites followed by nematodes and digeneans. Parasites, body size and diet of hosts differed between fish species. In general, body weight, diet and host phylogeny each explained some of the variation in richness and composition of parasites among the fishes. The 2 most closely related species, Cheilinus chlorourus and C. trilobatus, had broadly similar parasites but the Other fish species differed significantly in all variables. However, there was no all -encompassing pattern. This may, be because different lineages of parasites may react differently to ecological variables. We also argue that adult parasites may respond principally to host diet. In contrast, larval parasite composition may respond both to host diet and predator-prey interactions because this is the path by which many, parasites complete their life-cycles. Finally, variation in parasite phylogeny and parasite life-cycles among hosts likely increase the complexity of the system making it difficult to find all-encompassing patterns between host characteristics and parasites, particularly when all the species in rich parasite communities are considered.
Resumo:
Rabbitfish Siganus fuscescens preferences for Lyngbya majuscula collected from three bloom locations in Moreton Bay, Queensland, Australia, were tested along with a range of local plant species in the laboratory. Consumption of L. majuscula by fish did not differ between wild and captive-bred fish (P = 0.152) but did differ between bloom location (P = 0.039). No relationship was found between consumption rates and lyngbyatoxin-a concentration (r(2) = 0.035, P = 0.814). No correlation existed between C : N and proportion of food consumed when all food types were analysed statistically, whereas a clear correlation was observed when L. majuscula was removed from the calculations. In simulated bloom conditions, fish avoided ingestion of L. majuscula by feeding through gaps in the L. majuscula coverage. Both wild and captive-bred S. fuscescens showed a distinct feeding pattern in 10 day no-choice feeding assays, with less L. majuscula being consumed than the preferred red alga Acanthophora spicifera. Lyngbya majuscula however, was consumed in equal quantities to A. spicifera by wild S. fuscescens when lyngbyatoxin-a was not detectable. Wild fish probably do not preferentially feed on L. majuscula when secondary metabolites are present and are not severely impacted by large L. majuscula blooms in Moreton Bay. Furthermore, poor feeding performance in both captive-bred and wild S. fuscescens suggests that they would exert little pressure as a top-down control agent of toxic L. majuscula blooms within Moreton Bay. (c) 2006 The Fisheries Society of the British Isles.
Resumo:
Rates of food intake in animals consuming abundant prey can be constrained by the rates of digestion or excretion of ingested substances, such as salt, particularly so in the animals that regularly migrate between freshwater and saltwater environments. We tested this hypothesis in a long-distance migrant shorebird, the eastern curlew Numenius madagascariensis (suborder Charadrii), foraging on intertidal decapods in eastern Australia. We predicted that if food intake rates are constrained osmotically, individuals with access to freshwater and less saline prey (FW group) would have higher rates of food and water intake than individuals with seawater-only access (SW group). Food intake rates did not differ between the FW and SW groups (0.14 g ash-free dry mass min(-1)), nor did the water influx rates (0.75 g min(-1)). Salt intake rates were lower at FW sites (19.3 versus 23.3 mg NaCl min(-1)) and overall they were similar to those of marine birds. Food intake rate in the eastern curlew appeared limited by digestive rather than by osmoregulatory capacity.
Resumo:
Subtropical estuaries have received comparatively little attention in the study of nutrient loading and subsequent nutrient processing relative to temperate estuaries. Australian estuaries are particularly susceptible to increased nutrient loading and eutrophication, as 75% of the population resides within 200 km of the coastline. We assessed the factors potentially limiting both biomass and production in one Australian estuary, Moreton Bay, through stoichiometric comparisons of nitrogen (N), phosphorus (P), silicon (Si), and carbon (C) concentrations, particulate compositions, and rates of uptake. Samples were collected over 3 seasons in 1997-1998 at stations located throughout the bay system, including one riverine endmember site. Concentrations of all dissolved nutrients, as well as particulate nutrients and chlorophyll, declined 10-fold to 100-fold from the impacted western embayments to the eastern, more oceanic-influenced regions of the bay during all seasons. For all seasons and all regions, both the dissolved nutrients and particulate biomass yielded N : P ratios < 6 and N : Si ratios < 1. Both relationships suggest strong limitation of biomass by N throughout the bay. Limitation of rates of nutrient uptake and productivity were more complex. Low C : N and C : P uptake ratios at the riverine site suggested light limitation at all seasons, low N : P ratios suggested some degree of N limitation and high N : Si uptake ratios in austral winter suggested Si limitation of uptake during that season only. No evidence of P limitation of biomass or productivity was evident.
Resumo:
Humans are highly social animals and often help unrelated individuals that may never reciprocate the altruist's favour(1-5). This apparent evolutionary puzzle may be explained by the altruist's gain in social image: image-scoring bystanders, also known as eavesdroppers, notice the altruistic act and therefore are more likely to help the altruist in the future(5-7). Such complex indirect reciprocity based on altruistic acts may evolve only after simple indirect reciprocity has been established, which requires two steps. First, image scoring evolves when bystanders gain personal benefits from information gathered, for example, by finding cooperative partners(8-10). Second, altruistic behaviour in the presence of such bystanders may evolve if altruists benefit from access to the bystanders. Here, we provide experimental evidence for both of the requirements in a cleaning mutualism involving the cleaner fish Labroides dimidiatus. These cleaners may cooperate and remove ectoparasites from clients or they may cheat by feeding on client mucus(11,12). As mucus may be preferred over typical client ectoparasites(13), clients must make cleaners feed against their preference to obtain a cooperative service. We found that eavesdropping clients spent more time next to 'cooperative' than 'unknown cooperative level' cleaners, which shows that clients engage in image-scoring behaviour. Furthermore, trained cleaners learned to feed more cooperatively when in an `image-scoring' than in a 'non-image-scoring' situation.
Resumo:
Recently, there has been a dramatic increase in the number of ecotoxicological studies examining the effects of toxicants on fertilization success in marine broadcast spawners and it appears that this life-history stage is one of the most vulnerable to toxicants. Most of the studies examining this issue use single sperm concentrations in their assays. Here, I discuss recent advances in fertilization ecology that suggest this technique has some severe limitations resulting in unreliable estimations of the size and direction of toxicant effects. I present an alternative assay technique and two metrics (F-max and [Sperm](max)) that will reliably estimate the size of a toxicant's effect on fertilization success. This technique has the added advantage of making comparisons among species and studies easier without an impractical increase in effort. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Utilisation by fish of different estuarine habitats is known to vary at many different temporal scales, however no study to date has examined how utilisation varies at all the relevant times scales simultaneously. Here, we compare the utilisation by fish of sandy, intertidal foreshore habitats in a subtropical estuary at four temporal scales: between major spawning periods (spring/ summer and winter), among months within spawning periods, between the full and new moon each month, and between night and day within those lunar phases. Comparisons of assemblage composition, abundance of individuals and of fish in seven different,ecological guilds' were used to identify the temporal scales at which fish varied their use of unvegetated sandy habitats in the lower Noosa Estuary, Queensland, Australia. Fish assemblages were sampled with a seine net at three different regions. The most numerically dominant species caught were southern herring (Herklotsichthys castelnaui: Clupeidae), sand whiting (Sillago ciliata: Sillaginidae), weeping toadfish (Torquigener pleurogramma: Tetraodomidae), and silver biddy (Gerres subfasciatus: Gerreidae). Considerable variation at a range of temporal scales from short term (day versus night) to longer term (spawning periods) was detected for all but one of the variables examined. The clearest patterns were observed for diurnal effects, where generally abundance was greater at night than during the day. There were also strong lunar effects, although there were no consistent patterns between full moon and new moon periods. Significant differences among months within spawning periods were more common than differences between the actual spawning periods. The results clearly indicate that utilisation of sandy, unvegetated estuarine habitats is very dynamic and highly variable in space and time. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Niche apportionment models have only been applied once to parasite communities. Only the random assortment model (RA), which indicates that species abundances are independent from each other and that interspecific competition is unimportant, provided a good fit to 3 out of 6 parasite communities investigated. The generality of this result needs to be validated, however. In this study we apply 5 niche apportionment models to the parasite communities of 14 fish species from the Great Barrier Reef. We determined which model fitted the data when using either numerical abundance or biomass as an estimate of parasite abundance, and whether the fit of niche apportionment models depends on how the parasite community is defined (e.g. ecto, endoparasites or all parasites considered together). The RA model provided a good fit for the whole community of parasites in 7 fish species when using biovolume (as a surrogate of biomass) as a measure of species abundance. The RA model also fitted observed data when ecto- and endoparasites were considered separately, using abundance or biovolume, but less frequently. Variation in fish sizes among species was not associated with the probability of a model fitting the data. Total numerical abundance and biovolume of parasites were not related across host species, suggesting that they capture different aspects of abundance. Biovolume is not only a better measurement to use with niche-orientated models, it should also be the preferred descriptor to analyse parasite community structure in other contexts. Most of the biological assumptions behind the RA model, i.e. randomness in apportioning niche space, lack of interspecific competition, independence of abundance among different species, and species with variable niches in changeable environments, are in accordance with some previous findings on parasite communities. Thus, parasite communities may generally be unsaturated with species, with empty niches, and interspecific interactions may generally be unimportant in determining parasite community structure.
Resumo:
Following rapid lesion progression of white syndrome in tabular Acropora spp., the white bare skeleton gradually changes to green, a result of endolithic algae blooms (primarily Ostreobium spp.). Endolithic algal biomass and chlorophyll concentration were found to be an order of magnitude higher in the green zone compared with healthy appearing parts of each colony. Chl b to Chl a ratio increased from 1:1.6 in the healthy area to 1:2 and 1:3.5 in the white exposed skeleton and green zones, respectively. These observations together with pulse amplitude modulated (PAM) fluorometry suggest photoacclimation of the endoliths in the green zone. Histopathological microscopy revealed that the endolithic algal filaments penetrate the coral tissue. This study highlights the interaction of endolithic algae with both the skeleton and host tissue. This may have a critical role in the processes that accompany the post-disease state in reef-building corals.
Resumo:
Sand and nest temperatures were monitored during the 2002-2003 nesting season of the green turtle, Chelonia mydas, at Heron Island, Great Barrier Reef, Australia. Sand temperatures increased from similar to 24 degrees C early in the season to 27-29 degrees C in the middle, before decreasing again. Beach orientation affected sand temperature at nest depth throughout the season; the north facing beach remained 0.7 degrees C warmer than the east, which was 0.9 degrees C warmer than the south, but monitored nest temperatures were similar across all beaches. Sand temperature at 100 cm depth was cooler than at 40 cm early in the season, but this reversed at the end. Nest temperatures increased 2-4 degrees C above sand temperatures during the later half of incubation due to metabolic heating. Hatchling sex ratio inferred from nest temperature profiles indicated a strong female bias.