476 resultados para IWV


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Amazonian regions are characterized by large space-time variability in the humidity fields due to the intense convective process in those areas associated with the great humidity potential generated by high temperatures. An experiment denominated RACCI/DRY-TO-WET (RAdiation, Cloud, and Climate Interactions in the Amazonia during the DRY-TO-WET Transition Season) was carried out in the Brazilian Amazonian Region in 2002. The IWV values from GPS and other techniques, such as radiosondes, radiometer and humidity sounding satellites were used in this experiment to supply subsidies to evaluate the aerosols influence in the associated processes modifications to seasonality of atmospheric water vapor. Those regions are one of the most humid of the planet, where IWV (Integrated Water Vapor) average values are in the order of 50 kg/m2. As according the literature the IWV quantification using GPS has not been explored in those circumstances, the objective this paper is to present the preliminary results obtained in the evaluation of the GPS performance in Amazonian Regions when comparing with other techniques. The tendency measurement values indicated that the IWV values from GPS tend to be larger than those from radiosondes and smaller than those from radiometer. On the other hand, IWV values from GPS are very close of the average values supplied by radiosondes and radiometer. Due to the great amount of atmospheric water vapor existent in this region, the results obtained in the experiment in percentile terms are quite better than those found in the literature, which are around of 10%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estimation of tropospheric gradients in GNSS data processing is a well-known technique to improve positioning (e.g. Bar-Sever et al., 1998; Chen and Herring, 1997). More recently, several authors also focused on the estimation of such parameters for meteorological studies and demonstrated their potential benefits (e.g. Champollion et al., 2004). Today, they are routinely estimated by several global and regional GNSS analysis centres but they are still not yet used for operational meteorology.This paper discusses the physical meaning of tropospheric gradients estimated from GPS observations recorded in 2011 by 13 permanent stations located in Corsica Island (a French Island in the western part of Italy). Corsica Island is a particularly interesting location for such study as it presents a significant environmental contrast between the continent and the sea, as well as a steep topography.Therefore, we estimated Zenith Total Delay (ZTD) and tropospheric gradients using two software: GAMIT/GLOBK (GAMIT version 10.5) and GIPSY-OASIS II version 6.1. Our results are then compared to radiosonde observations and to the IGS final troposphere products. For all stations we found a good agreement between the ZWD estimated by the two software (the mean of the ZWD differences is 1 mm with a standard deviation of 6 mm) but the tropospheric gradients are in less good agreement (the mean of the gradient differences is 0.1 mm with a standard deviation of 0.7 mm), despite the differences in the processing strategy (double-differences for GAMIT/GLOBK versus zero-difference for GIPSY-OASIS).We also observe that gradient amplitudes are correlated with the seasonal behaviour of the humidity. Like ZWD estimates, they are larger in summer than in winter. Their directions are stable over the time but not correlated with the IWV anomaly observed by ERA-Interim. Tropospheric gradients observed at many sites always point to inland throughout the year. These preferred directions are almost opposite to the largest slope of the local topography as derived from the world Digital Elevation Model ASTER GDEM v2. These first results give a physical meaning to gradients but the origin of such directions need further investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microwave radiometer TROWARA measures integrated water vapour (IWV) and integrated cloud liquid water (ILW) at Bern since 1994 with a time resolution of 7 s. In this study, we compare TROWARA measurements with a simulation of summer 2012 in Switzerland performed with the Weather Research and Forecasting (WRF) model. It is found that the WRF model agrees very well with TROWARA’s IWV variations with a mean bias of only 0.7 mm. The ILW distribution of the WRF model, although similar in shape to TROWARA’s distribution, overestimates the fraction of clear sky periods (83% compared to 60%).