949 resultados para ION DIP SPECTROSCOPY
Resumo:
Solid-state C-13 nuclear magnetic resonance (NMR) with cross-polarisation (CP) and magic-angle-spinning (MAS) was used to: (a) examine the changes in carbon (C) composition of windrowed harvest residues during the first 3 years of hoop pine plantations in subtropical Australia; (b) assess the impacts of windrowed harvest residues on soil organic matter (SOM) composition and quality in the 0-10 cm soil layer. Harvest residues were collected from 0-, 1-, 2- and 3-year-old windrows of ca. 2.5 m width (15 m apart for 0-, 1- and 2-year-old sites and 10 m apart for 3-year-old site). Soils from the 0 to 10 cm soil layer were collected from the 1-, 2- and 3-year-old sites. The 13C NMR spectra of the harvest residues indicated the presence of lignin in the hoop pine wood, foliage and newly incorporated organic matter (NIOM). Condensed tannin structures were found in the decay-resistant bark, small wood and foliage, but were absent in other residue components and SOM. The NMR spectra of small wood samples contained condensed tannin structures because the outer layer of bark was not removed. NIOM showed a shift from foliage-like structures (celluloses) to lignin-type structures, indicating an incorporation of woody residues from the decomposing harvest residues. Suberins were also present in the small wood, foliage and bark. The 13C CP NMR spectra of SOM indicated that in areas where windrows were present, SOM did not show compositional changes. However, an increase in SOM quality under the windrows in the second year after their formation as characterised by the alkyl C/O-alkyl C (A/O-A) ratio was mainly due to inputs from the decomposition of the labile, readily available components of the windrowed harvest residues. (C) 2002 Published by Elsevier Science B.V.
Resumo:
A thorough investigation was performed on the physical (mechanical, thermal, and hydrothermal stability) and chemical (ion exchange capacity and silanol number) characteristics of aluminosilicate FSMs, synthesized via a new successful short-time synthesis route using leached saponite and a low concentration of CTAB. Moreover, the influence of an additional Al incorporation, utilizing different aluminum sources, on the structure of the FSM derived from saponite is studied. A mesoporous aluminosilicate with a low Si/Al ratio of 12.8 is synthesized, and still has a very large surface area of 1130 m(2)/g and pore volume of 0.92 cm(3)/g. The aluminum-containing samples all have a high cation exchange capacity of around 1 mmol/9 while they still have a silanol number of about 0.9 OH/nm(2); both characteristics being interesting for high-yield postsynthesis modification reactions. Finally, a study is performed on the transformation of the aluminosilicates into their Bronsted acid form via the exchange with ammonium ions and a consecutive heat treatment.
Resumo:
Purpose. As reductions in dermal clearance increase the residence time of solutes in the skin and underlying tissues we compared the topical penetration of potentially useful vasoconstrictors (VCs) through human epidermis as both free bases and ion-pairs with salicylic acid (SA). Methods. We determined the in vitro epidermal flux of ephedrine, naphazoline, oxymetazoline, phenylephrine, and xylometazoline applied as saturated solutions in propylene glycol: water (1: 1) and of ephedrine, naphazoline and tetrahydrozoline as 10% solutions of 1: 1 molar ratio ion-pairs with SA in liquid paraffin. Results. As free bases, ephedrine had the highest maximal flux, Jmax = 77.4 +/- 11.7 mug/cm(2)/h, being 4-fold higher than tetrahydrozoline and xylometazoline, 6-fold higher than phenylephrine, 10-fold higher than naphazoline and 100-fold higher than oxymetazoline. Stepwise regression of solute physicochemical properties identified melting point as the most significant predictor of flux. As ion-pairs with SA, ephedrine and naphazoline had similar fluxes (11.5 +/- 2.3 and 12.0 +/- 1.6 mug/cm(2)/h respectively), whereas tetrahydrozoline was approximately 3-fold slower. Corresponding fluxes of SA from the ion-pairs were 18.6 +/- 0.6, 7.8 +/- 0.8 and 1.1 +/- 0.1 respectively. Transdermal transport of VC's is discussed. Conclusions. Epidermal retention of VCs and SA did not correspond to their molar ratio on application and confirmed that following partitioning into the stratum corneum, ion-pairs separate and further penetration is governed by individual solute characteristics.
Resumo:
The three-dimensional structure of chemically synthesized CnErg1 (Ergtoxin), which specifically blocks HERG (human ether-a-go-go-related gene) K+ channels, was determined by nuclear magnetic resonance spectroscopy. CnErg1 consists of a triple-stranded beta-sheet and an a-helix, as is typical of K+ channel scorpion toxins. The peptide structure differs from the canonical structures in that the first beta-strand is shorter and is nearer to the second beta-strand rather than to the third beta-strand on the C-terminus. There is also a large hydrophobic patch on the surface of the toxin, surrounding a central lysine residue, Lys13. We postulate that this hydrophobic patch is likely to form part of the binding surface of the toxin. (C) 2003 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
The ESR spectra of poly(chlorotrifluoroethylene) were recorded following gamma-radiolysis under vacuum at room temperature and 77 K. The very broad spectrum at 77 K revealed little fine structure with which to identity the radicals formed upon irradiation, but subsequent photobleaching and annealing studies, together with radiolytic studies at higher temperatures, afforded scope for making radical assignments. Both main-chain radicals and a range of chain-end radicals have been identified. The G-values for radical formation were 1.55, 0.36 and 0.32 at 77 K, 273 K and room temperature, respectively. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Fluoropolymers are known as chemically inert materials with good high temperature resistance, so they are often the materials of choice for harsh chemical environments. These properties arise because the carbon-fluorine bond is the strongest of all bonds between other elements and carbon, and, because of their large size, fluorine atoms can protect the carbon backbone of polymers such as poly(tetrafluoroethylene), PTFE, from chemical attack. However, while the carbon-fluorine bond is much stronger than the carbon hydrogen bond, the G values for radical formation on high energy radiolysis of fluoropolymers are roughly comparable to those of their protonated counterparts. Thus, efficient high energy radiation grafting of fluoropolymers is practical, and this process can be used to modify either the surface or bulk properties of a fluoropolymer. Indeed, radiation grafted fluoropolymers are currently being used as separation membranes for fuel cells, hydrophilic filtration membranes and matrix substrate materials for use in combinatorial chemistry. Herein we present a review of recent studies of the high energy radiation grafting of fluoropolymers and of the analytical methods available to characterize the grafts. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
FeBr2 reacts with the S2C2(CN)22- ion (1:1 ratio) in the presence of an excess of t-BuNC in THF to give the mixed ligand [Fe(S2C2(CN)2)(t-BuNC) 4] compound. This neutral product with a formal oxidation state of two for the iron atom was characterized by conductivity measurements, and, i.r., Mössbauer, 13C and 1H n.m.r. spectroscopy. There is a Fe-C p back-donation strengthened towards isocyanide ligands, according to the data of 13C, 1H n.m.r. and Mössbauer spectroscopy.
Resumo:
Um complexo de alta fotoluminescência é proposto como marcador óptico para a identificação de resíduos de tiro (GSR). O marcador é o complexo [Eu(PIC)3(NMK)3], de fórmula molecular Eu(C6H2N3O7)3.(C7H13NO)3, que apresenta o íon Eu3+ e os ligantes ácido pícrico (PIC) e n-metil-Ɛ-caprolactama (NMK). Foi realizada a caracterização quimicamente através de espectroscopia de emissão, espectroscopia de infravermelho com transformada de Fourier (FTIR), termogravimetria e análise térmica diferencial (TG/DTA), e espectrometria de massas com ionização por eletrospray e ressonância ciclotrônica de íons por transformada de Fourier (ESI-FT-ICR MS), e, em seguida, foram adicionadas diferentes massas do complexo a munições convencionais (de 2 a 50 mg por cartucho). Após os tiros, o GSR marcado foi visualmente e quimicamente detectado por irradiação UV (ʎ = 395 nm) e ESI-FT-ICR MS, respectivamente. Os resultados mostraram uma fotoluminescência eficiente e duradoura, sendo facilmente visível sobre a superfície do alvo, no ambiente, no cartucho deflagrado, na arma de fogo, e sobre as mãos e braços do atirador quando utilizada massa a partir de 25 mg do marcador em cartuchos .38 e 50 mg em cartuchos .40. Sua toxicidade aguda também foi avaliada empregando-se o Protocolo 423 da Organização para a Cooperação e Desenvolvimento Econômico (OECD) e apresentou DL50 de 1000 mg.kg-1, sendo classificado como de categoria 4 na escala do Sistema Globalmente Harmonizado de Classificação e Rotulagem de Produtos Químicos (GHS), considerado, portanto, de média toxicidade. O composto mostrou ser menos tóxico do que os componentes inorgânicos de munições convencionais (em especial o Pb), justificando o seu emprego como marcador de GSR.
Resumo:
Battery separators based on electrospun membranes of poly(vinylidene fluoride) (PVDF) have been prepared in order to study the effect of fiber alignment on the performance and characteristics of the membrane. The prepared membranes show an average fiber diameter of ~272 nm and a degree of porosity of ~87 %. The gel polymer electrolytes are prepared by soaking the membranes in the electrolyte solution. The alignment of the fibers improves the mechanical properties for the electrospun membranes. Further, the microstructure of the membrane also plays an important role in the ionic conductivity, being higher for the random electrospun membrane due to the lower tortuosity value. Independently of the microstructure, both membranes show good electrochemical stability up to 5.0 V versus Li/Li+. These results show that electrospun membranes based on PVDF are appropriate for battery separators in lithium-ion battery applications, the random membranes showing a better overall performance.
Resumo:
A biosensor for urea has been developed based on the observation that urea is a powerful active-site inhibitor of amidase, which catalyzes the hydrolysis of amides such as acetamide to produce ammonia and the corresponding organic acid. Cell-free extract from Pseudomonas aeruginosa was the source of amidase (acylamide hydrolase, EC 3.5.1.4) which was immobilized on a polyethersulfone membrane in the presence of glutaraldehyde; anion-selective electrode for ammonium ions was used for biosensor development. Analysis of variance was used for optimization of the biosensorresponse and showed that 30 mu L of cell-free extract containing 7.47 mg protein mL(-1), 2 mu L of glutaraldehyde (5%, v/v) and 10 mu L of gelatin (15%, w/v) exhibited the highest response. Optimization of other parameters showed that pH 7.2 and 30 min incubation time were optimum for incubation ofmembranes in urea. The biosensor exhibited a linear response in the range of 4.0-10.0 mu M urea, a detection limit of 2.0 mu M for urea, a response timeof 20 s, a sensitivity of 58.245 % per mu M urea and a storage stability of over 4 months. It was successfully used for quantification of urea in samples such as wine and milk; recovery experiments were carried out which revealed an average substrate recovery of 94.9%. The urea analogs hydroxyurea, methylurea and thiourea inhibited amidase activity by about 90%, 10% and 0%, respectively, compared with urea inhibition.
Resumo:
The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x-y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabView code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET),maximum excitation energy or “q” value (q), and isolationmass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit.Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.
Resumo:
Following work on tantalum and chromium implanted flat M50 steel substrates, this work reports on the electrochemical behaviour of M50 steel implanted with tantalum and chromium and the effect of the angle of incidence. Proposed optimum doses for resistance to chloride attack were based on the interpretation of results obtained during long-term and accelerated electrochemical testing. After dose optimization from the corrosion viewpoint, substrates were implanted at different angles of incidence (15°, 30°, 45°, 60°, 75°, 90°) and their susceptibility to localized corrosion assessed using open-circuit measurements, step by step polarization and cyclic voltammetry at several scan rates (5–50 mV s-1). Results showed, for tantalum implanted samples, an ennoblement of the pitting potential of approximately 0.5 V for an angle of incidence of 90°. A retained dose of 5 × 1016 atoms cm-2 was found by depth profiling with Rutherford backscattering spectrometry. The retained dose decreases rapidly with angle of incidence. The breakdown potential varies roughly linearly with the angle of incidence up to 30° falling fast to reach -0.1 V (vs. a saturated calomel electrode (SCE)) for 15°. Chromium was found to behave differently. Maximum corrosion resistance was found for angles of 45°–60° according to current densities and breakdown potentials. Cr+ depth profiles ((p,γ) resonance broadening method), showed that retained doses up to an angle of 60° did not change much from the implanted dose at 90°, 2 × 1017 Cr atoms cm-2. The retained implantation dose for tantalum and chromium was found to follow a (cos θ)8/3 dependence where θ is the angle between the sample normal and the beam direction.
Resumo:
Background: Protein-energy wasting (PEW), associated with inflammation and overhydration, is common in haemodialysis (HD) patients and is associated with high morbidity and mortality. Objective: Assess the relationship between nutritional status, markers of inflammation and body composition through bioimpedance spectroscopy (BIS) in HD patients. Methods: This observational, cross-sectional, single centre study, carried out in an HD centre in Forte da Casa (Portugal), involved 75 patients on an HD programme. In all participating patients, the following laboratory tests were conducted: haemoglobin, albumin, C-reactive protein (CRP) and 25-hydroxyvitamin D3 [25(OH)D3]. The body mass index of all patients was calculated and a modified version of subjective global assessment (SGA) was produced for patients on dialysis. Intracellular water (ICW) and extracellular water (ECW) were measured by BIS (Body Composition Monitor®, Fresenius Medical Care®) after the HD session. In statistical analysis, Spearman’s correlation was used for the univariate analysis and linear regression for the multivariate analysis (SPSS 14.0). A P value of <.05 was considered statistically significant. Results: PEW, inversely assessed through the ICW/body weight (BW) ratio, was positively related to age (P<.001), presence of diabetes (P=.004), BMI (P=.01) and CRP (P=.008) and negatively related to albumin (p=.006) and 25(OH)D3 (P=.007). Overhydration, assessed directly through the ECW/BW ratio, was positively related with CRP (P=.009) and SGA (P=.03), and negatively with 25(OH)D3 (P=.006) and BMI (P=.01). In multivariate analysis, PEW was associated with older age (P<.001), the presence of diabetes (P=.003), lower 25(OH)D3 (P=.008), higher CRP (P=.001) and lower albumin levels (P=.004). Over-hydration was associated with higher CRP (P=.001) and lower levels of 25(OH)D3 (P=.003). Conclusions: Taking these results into account, the ICW/BW and ECW/BW ratios, assessed with BIS, have proven to be good markers of the nutritional and inflammatory status of HD patients. BIS may be a useful tool for regularly assessing the nutritional and hydration status in these patients and may allow nutritional advice to be improved and adjusted.