991 resultados para INTERNAL CAROTID ARTERY
Resumo:
BACKGROUND: Recently, a compact cardiopulmonary support (CPS) system designed for quick set-up for example, during emergency cannulation, has been introduced. Traditional rectilinear percutaneous cannulas are standard for remote vascular access with the original design. The present study was designed to assess the potential of performance increase by the introduction of next-generation, self-expanding venous cannulas, which can take advantage of the luminal width of the venous vasculature despite a relatively small access orifice. METHODS: Veno-arterial bypass was established in three bovine experiments (69+/-10 kg). The Lifebridge (Lifebridge GmbH, Munich, Germany) system was connected to the right atrium in a trans-jugular fashion with various venous cannulas; and the oxygenated blood was returned through the carotid artery with a 17 F percutaneous cannula. Two different venous cannulas were studied, and the correlation between the centrifugal pump speed (1500-3900 RPM), flow and the required negative pressure on the venous side was established: (A) Biomedicus 19 F (Medtronic, Tolochenaz, Switzerland); (B) Smart canula 18 F/36 F (Smartcanula LLC, Lausanne, Switzerland). RESULTS: At 1500 RPM, the blood flow was 0.44+/-0.26 l min(-1) for the 19 F rectilinear cannula versus 0.73+/-0.34 l min(-1) for the 18/36 F self-expanding cannula. At 2500 RPM the blood flow was 1.63+/-0.62 l min(-1) for the 19F rectilinear cannula versus 2.13+/-0.34 l min(-1) for the 18/36 F self-expanding cannula. At 3500 RPM, the blood flow was 2.78+/-0.47 l min(-1) for the 19 F rectilinear cannula versus 3.64+/-0.39 l min(-1) for the 18/36 F self-expanding cannula (p<0.01 for 18/36 F vs 19 F). At 1500 RPM, the venous line pressure was 18+/-8 mmHg for the 19F rectilinear cannula versus 19+/-5 mmHg for the 18/36 F self-expanding cannula. At 2500 RPM the venous line pressure accounted for -22+/-32 mmHg for the 19 F rectilinear cannula versus 2+/-5 mmHg for the 18/36 F self-expanding cannula. At 3500 RPM, the venous line pressure was -112+/-42 mmHg for the rectilinear cannula versus 28+/-7 mmHg for the 18/36 F self-expanding cannula (p<0.01 for 18 F/36 F vs 19 F). Conclusions: The negative pressure required to achieve adequate venous drainage with the self-expanding venous cannula accounts for approximately 31% of the pressure necessary with the 19 F rectilinear cannula. In addition, a pump flow of more than 4 l min(-1) can be achieved with the self-expanding design and a well-accepted negative inlet pressure for minimal blood trauma of less than 50 mmHg.
Resumo:
Objectives: The ortopantomography (OPG) can be a valuable way for an early detection of calcified atheroma plaques, thus contributing for a preliminary stroke risk evaluation. The study looks for the existence of calcified atheroma plates through the use of OPG, comparing the results with the stenosis percentage found through eco-doppler. It has been analyzed the correlation of the number of years as a smoker, arterial hypertension and body mass index, against the risk of having calcified atheroma plaques. Study Design: Observational, transversal and prospective study with 84 patients from the Dental Center of Hospital Particular de Lisboa. First the patients answered to an inquiry and them they were submitted to an OPG and an eco-doppler. Results and Conclusions: It is possible to detect calcified atheroma plaques in the carotid artery through an OPG and patients who have them have got a fifteen fold greater risk of suffering from carotid stenosis. In this study, it has been confirmed the increase in carotid stenosis for long term smokers (OR = 1,033, n=18, 42,9%). The study results show that hypertension patients have a probability 5,426 greater than normal of developing atheroma plaques (with sig=0,049). Amid analyzed patients, the correlation between obesity and the existence of carotid atheroma plaques was significant, although negative (sig=0,047). OPG can help find patients with higher risk of isquemic stroke
Resumo:
D-JNKI1, a cell-permeable peptide inhibitor of the c-Jun N-terminal kinase (JNK) pathway, has been shown to be a powerful neuroprotective agent after focal cerebral ischemia in adult mice and young rats. We have investigated the potential neuroprotective effect of D-JNKI1 and the involvement of the JNK pathway in a neonatal rat model of cerebral hypoxia-ischemia. Seven-day-old rats underwent a permanent ligation of the right common carotid artery followed by 2h of hypoxia (8% oxygen). Treatment with D-JNKI1 (0.3mg/kg intraperitoneally) significantly reduced early calpain activation, late caspase-3 activation and, in the thalamus, autophagosome formation, indicating an involvement of JNK in different types of cell death: necrotic, apoptotic and autophagic. However the size of the lesion was unchanged. Further analysis showed that neonatal hypoxia-ischemia induced an immediate decrease in JNK phosphorylation (reflecting mainly P-JNK1) followed by a slow progressive increase (including P-JNK3 54kDa), whereas c-jun and c-fos expression were both strongly activated immediately after hypoxia-ischemia. In conclusion, unlike in adult ischemic models, JNK is only moderately activated after severe cerebral hypoxia-ischemia in neonatal rats and the observed positive effects of D-JNKI1 are insufficient to give neuroprotection. Thus, for perinatal asphyxia, D-JNKI1 can only be considered in association with other therapies.
Resumo:
In Spain a significant number of individuals die from atherosclerotic disease of the coronary and carotid arteries without having classic risk factors and prodromal symptoms. The diagonal ear lobe crease (DELC) has been characterized in the medical literature as a surrogate marker which can identify high risk patients having occult atherosclerosis. This topic however has not been examined in either the medical or dental literature emanating from Spain. The majority of clinical, angiography and postmortem reports support the premise that DELC is a valuable extravascular physical sign able to distinguish some patients at risk of succumbing to atherosclerosis of the coronary arteries. A minority of studies have however failed to support this hypothesis. More recently reports using B mode ultrasound have also linked DELC to atherosclerosis of the carotid artery and another report has related DELC to the presence of calcified carotid artery atheromas on panoramic radiographs. DELC is readily visible during head and neck cancer screening examinations. In conjunction with the patient"s medical history, vital signs, and panoramic radiograph, the DELC may assist in atherosclerotic risk assessment
Resumo:
Introduction. The purpose of the present contribution is to perform a detailed anatomic and virtual reality three-dimensional stereoscopic study in order to test the effectiveness of the extended endoscopic endonasal approaches for selected anterior and posterior circulation aneurysms. Methods. The study was divided in two main steps: (1) simulation step, using a dedicated Virtual Reality System (Dextroscope, Volume Interactions); (2) dissection step, in which the feasibility to reach specific vascular territory via the nose was verified in the anatomical laboratory. Results. Good visualization and proximal and distal vascular control of the main midline anterior and posterior circulation territory were achieved during the simulation step as well as in the dissection step (anterior communicating complex, internal carotid, ophthalmic, superior hypophyseal, posterior cerebral and posterior communicating, basilar, superior cerebellar, anterior inferior cerebellar, vertebral, and posterior inferior cerebellar arteries). Conclusion. The present contribution is intended as strictly anatomic study in which we highlighted some specific anterior and posterior circulation aneurysms that can be reached via the nose. For clinical applications of these approaches, some relevant complications, mainly related to the endonasal route, such as proximal and distal vascular control, major arterial bleeding, postoperative cerebrospinal fluid leak, and olfactory disturbances must be considered
Resumo:
Arterial stiffness assessed by carotid-femoral pulse wave velocity (cfPWV) measurement is now well accepted as an independent predictor of vascular mortality and morbidity. However, the value of cfPWV has been considered to be limited for risk classification in patients with several vascular risk factors. Magnetic resonance (MR) allows measurement of PWV between two points, though to date mainly used to study the aorta. To assess the common carotid artery pulse wave velocity by magnetic resonance, determine their association with classical vascular risk factors and ischemic brain injury burden in patients with suspected ischemic cerebrovascular disease
Resumo:
The risk of cardiovascular diseases and sleep-disordered breathing increases after menopause. This cross-sectional study focuses on overnight transcutaneous carbon dioxide (TcCO2) measurements and their power to predict changes in the early markers of cardiovascular and metabolic diseases. The endothelial function of the brachial artery, the intima-media thickness of the carotid artery, blood pressure, glycosylated hemoglobin A1C and plasma levels of cholesterols and triglycerides were used as markers of cardiovascular and metabolic diseases. The study subjects consisted of healthy premenopausal women of 46 years of age and postmenopausal women of 56 years of age. From wakefulness to sleep, the TcCO2 levels increased more in postmenopausal women than in premenopausal women. In estrogen-users the increase in TcCO2 levels was even more pronounced than in other postmenopausal women. From the dynamic behaviour of the nocturnal TcCO2 signal, several important features were detected. These TcCO2 features had a remarkable role in the prediction of endothelial dysfunction and thickening of the carotid wall in healthy premenopausal women. In addition, these TcCO2 features were linked with blood pressure, lipid profile and glucose balance in postmenopausal women. The nocturnal TcCO2 profile seems to contain significant information, which is associated with early changes in cardiovascular diseases in middle-aged women. TcCO2 might not only measure the tissue carbon dioxide levels, but the TcCO2 signal variation may also reflect peripheral vasodynamic events caused by increased sympathetic activity during sleep.
Resumo:
Background: Metabolic syndrome (MetS) is a combination of several cardio-metabolic risk factors including obesity, hyperglycemia, hypertension and dyslipidemia. MetS has been associated with increased levels of apolipoprotein B (apoB) and low-density lipoprotein oxidation (OxLDL) and with an increased risk of cardiovascular disease and non-alcoholic fatty liver disease. Aims: To establish the relation of apoB and OxLDL with the MetS development and to determine the status of MetS as a risk factor for adverse liver changes and for subclinical atherosclerosis. Subjects and Methods: The present thesis is part of the two large scale population-based, prospective, observational studies. Cardiovascular Risk in Young Finns study was launched in 1980 including 3,596 subjects aged 3-18 years. Thereafter follow-up studies have been conducted regularly. In the latest follow-ups that were performed in 2001 (N=2,283) and 2007 (N=2,204), non-invasive ultrasound studies were introduced to the study protocol to measure subclinical atherosclerosis i.e. carotid intima-media thickness (IMT), carotid artery distensibility (Cdist) and brachial flow-mediated dilatation (FMD). Alanine-aminotransferase (ALT) and gammaglutamyltransferase (GGT) were measured in 2007 to assess liver function. The Bogalusa Heart Study is a long-term epidemiologic study of cardiovascular risk factors launched in 1972 in a biracial community of Bogalusa, Louisiana, USA. Total of 374 youths (aged 9-18 years at baseline in 1984-88) who underwent non-invasive ultrasound studies of the carotid artery as adults, were included in the analyses of the present thesis. Results: The odds ratios (95% confidence intervals) for MetS incidence during a 6-year follow-up by quartiles of apoB were 2.0(1.0-3.8) for the second quartile, 3.1(1.7-5.7) for the third quartile and 4.2(2.3-7.6) for the fourth quartile. OxLDL was not independently associated with incident MetS. Youth (aged 9-18 years) with MetS or with high body mass index were at 2-3 times the risk of having MetS, high IMT, and type 2 diabetes 24-years later as adults. IMT increased 79±7μm (mean±SEM) in subjects with MetS and 42±2μm in subjects without the MetS (P<0.0001) during 6- years. Subjects who lost the MetS diagnosis during 6-year follow-up had reduced IMT progression compared to persistent MetS group (0.036±0.005vs.0.079±0.010 mm, P=0.001) and reduced Cdist change compared to incident MetS group (-0.12±0.05vs.-0.38±0.10 %/mmHg, P=0.03) over 6-year follow-up. MetS predicted elevated ALT (β±SEM=0.380±0.052, P<0.0001 in men and 0.160±0.052, P=0.002 in women) and GGT (β±SEM=0.240±0.058, P<0.0001 in men and 0.262±0.053, P<0.0001 in women) levels after 6-years. Conclusions: These findings suggest that apoB may give additional information on early metabolic disturbances predisposing MetS. MetS may be used to identify individuals at increased risk of developing atherosclerosis and non-alcoholic liver disease. However, recovery from the MetS may have positive effects on liver and vascular properties.
Resumo:
The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.
Resumo:
The objective of this report was to describe a variation in the origin of the lateral internal thoracic artery (LITA), a variable large-caliber artery in the thoracic wall. This report presents a case in which a trunk coming from the subclavian artery (SCA) bifurcates and gives origin to the LITA and internal thoracic artery (ITA). This case demonstrates an unusual bilateral origin for the LITA, which emerges together with the ITA rather than directly from the SCA, as could be expected. Although such presentation is uncommon, the possibility that it could be damaged during surgical interventions such as thoracotomy and pleural drainage justifies our report .
Resumo:
The aim of this study was to describe the topography of the spinal cord of the red-footed tortoise to establish a morphological basis for applied research in anesthesiology and morphology. Six tortoises from the state of Maranhão (Brazil) that had died of natural causes were used. The common carotid artery was used to perfuse the arterial system with saline solution (heated to 37ºC) and to fix the material with a 20% formaldehyde solution. The specimens were then placed in a modified decalcifying solution for 72 hours to allow dorsal opening of the carapace with a chisel and an orthopedic hammer. Dissection of the dorsal musculature and sectioning of the vertebral arches were performed to access the spinal cord. The results revealed the spinal cord of G. carbonaria to be an elongated, whitish mass that reached the articulation between the penultimate and last caudal vertebrae. The cervical intumescence (Intumescentia cervicalis) was located between vertebral segments C5 and T1, whereas the lumbosacral intumescence (Intumescentia lumbalis) was located between T6 and Ca1.
Resumo:
Background: The function of the autonomic nervous system (ANS) can be evaluated with heart rate variability (HRV). Decreased HRV is associated with aging, the male sex, increased heart rate, and overall increased cardiometabolic risk. It has been hypothesized that early atherosclerotic vascular changes and ANS function are related. Aims: The aims were to assess reference values on HRV in young adults, and examine associations with HRV and cardiometabolic risk factors and metabolic syndrome (MetS) and to study relations between HRV and ultrasonographically measured vascular properties. Participants and methods: The present thesis is part of the Cardiovascular Risk in Young Finns Study. The thesis is based on the follow-up study in 2001, when the study individuals were 24-39 years of age. HRV data were available on 1 956 individuals. Results: HRV was inversely associated with age and heart rate (for all p<0.001). Highfrequency HRV (HF) was higher, and low-frequency HRV (LF) lower in women than men (p<0.0001 for both). MetS was associated with 11% decreased HF and 12% increased LF/HF-ratio in women, and 8% decreased HF and 4% increased LF/HF-ratio in men. Carotid artery distensibility was independently associated with HF and total HRV (for both p<0.05). Conclusions: The reference values in young adults were generated. Decreased HRV was associated with age, the male sex and increased heart rate. Women had higher HF and lower LF variability than men. MetS was related to decrease in HRV. The observed associations between carotid elasticity and HRV, supports the hypothesis that reduction in carotid elasticity may lead to decrease in autonomic cardiac control.
Resumo:
Blood pressure (BP) profiles were monitored in nine free-ranging sloths (Bradypus variegatus) by coupling one common carotid artery to a BP telemetry transmitter. Animals moved freely in an isolated and temperature-controlled room (24ºC) with 12/12-h artificial light-dark cycles and behaviors were observed during resting, eating and moving. Systolic (SBP) and diastolic (DBP) blood pressures were sampled for 1 min every 15 min for 24 h. BP rhythm over 24 h was analyzed by the cosinor method and the mesor, amplitude, acrophase and percent rhythm were calculated. A total of 764 measurements were made in the light cycle and 721 in the dark cycle. Twenty-four-hour values (mean ± SD) were obtained for SBP (121 ± 22 mmHg), DBP (86 ± 17 mmHg), mean BP (MBP, 98 ± 18 mmHg) and heart rate (73 ± 16 bpm). The SBP, DBP and MBP were significantly higher (unpaired Student t-test) during the light period (125 ± 21, 88 ± 15 and 100 ± 17 mmHg, respectively) than during the dark period (120 ± 21, 85 ± 17 and 97 ± 17 mmHg, respectively) and the acrophase occurred between 16:00 and 17:45 h. This circadian variation is similar to that observed in cats, dogs and marmosets. The BP decreased during "behavioral sleep" (MBP down from 110 ± 19 to 90 ± 19 mmHg at 21:00 to 8:00 h). Both feeding and moving induced an increase in MBP (96 ± 17 to 119 ± 17 mmHg at 17:00 h and 97 ± 19 to 105 ± 12 mmHg at 15:00 h, respectively). The results show that conscious sloths present biphasic circadian fluctuations in BP levels, which are higher during the light period and are mainly synchronized with feeding.
Resumo:
We investigate whether combined treatment with losartan, an angiotensin II receptor blocker, and exercise training (ET) in spontaneously hypertensive rats (SHR) would have an additive effect in reducing hypertension and improving baroreflex sensitivity when compared with losartan alone. Male SHR (8 weeks old) were assigned to 3 groups: sedentary placebo (SP, N = 16), sedentary under losartan treatment (SL, N = 11; 10 mg kg-1 day-1, by gavage), and ET under losartan treatment (TL, N = 10). ET was performed on a treadmill 5 days/week for 60 min at 50% of peak VO2, for 18 weeks. Blood pressure (BP) was measured with a catheter inserted into the carotid artery, and cardiac output with a microprobe placed around the ascending aorta. The baroreflex control of heart rate was assessed by administering increasing doses of phenylephrine and sodium nitroprusside (iv). Losartan significantly reduced mean BP (178 ± 16 vs 132 ± 12 mmHg) and left ventricular hypertrophy (2.9 ± 0.4 vs 2.5 ± 0.2 mg/g), and significantly increased baroreflex bradycardia and tachycardia sensitivity (1.0 ± 0.3 vs 1.7 ± 0.5 and 2.0 ± 0.7 vs 3.2 ± 1.7 bpm/mmHg, respectively) in SL compared with SP. However, losartan combined with ET had no additional effect on BP, baroreflex sensitivity or left ventricular hypertrophy when compared with losartan alone. In conclusion, losartan attenuates hypertension and improves baroreflex sensitivity in SHR. However, ET has no synergistic effect on BP in established hypertension when combined with losartan, at least at the dosage used in this investigation.
Resumo:
Discrepancy was found between enhanced hypotension and attenuated relaxation of conduit arteries in response to acetylcholine (ACh) and bradykinin (BK) in nitric oxide (NO)-deficient hypertension. The question is whether a similar phenomenon occurs in spontaneously hypertensive rats (SHR) with a different pathogenesis. Wistar rats, SHR, and SHR treated with NO donors [molsidomine (50 mg/kg) or pentaerythritol tetranitrate (100 mg/kg), twice a day, by gavage] were studied. After 6 weeks of treatment systolic blood pressure (BP) was increased significantly in experimental groups. Under anesthesia, the carotid artery was cannulated for BP recording and the jugular vein for drug administration. The iliac artery was used for in vitro studies and determination of geometry. Compared to control, SHR showed a significantly enhanced (P < 0.01) hypotensive response to ACh (1 and 10 µg, 87.9 ± 6.9 and 108.1 ± 5.1 vs 35.9 ± 4.7 and 64.0 ± 3.3 mmHg), and BK (100 µg, 106.7 ± 8.3 vs 53.3 ± 5.2 mmHg). SHR receiving NO donors yielded similar results. In contrast, maximum relaxation of the iliac artery in response to ACh was attenuated in SHR (12.1 ± 3.6 vs 74.2 ± 8.6% in controls, P < 0.01). Iliac artery inner diameter also increased (680 ± 46 vs 828 ± 28 µm in controls, P < 0.01). Wall thickness, wall cross-section area, wall thickness/inner diameter ratio increased significantly (P < 0.01). No differences were found in this respect among SHR and SHR treated with NO donors. These findings demonstrated enhanced hypotension and attenuated relaxation of the conduit artery in response to NO activators in SHR and in SHR treated with NO donors, a response similar to that found in NO-deficient hypertension.