741 resultados para IMMISCIBLE POLYMER BLENDS
Resumo:
Polymeric materials have been used in dental applications for decades. Adhesion of polymeric materials to each other and to the tooth substrate is essential to their successful use. The aim of this series of studies was two-folded. First, to improve adhesion of poly(paraphenylene) based rigid rod polymer (RRP) to other dental polymers, and secondly, to evaluate the usability of a new dentin primer system based on RRP fillers. Poly(paraphenylene) based RRP would be a tempting material for dental applications because of its good mechanical properties. To be used in dental applications, reliable adhesion between RRP and other dental polymers is required. In this series of studies, the adhesion of RRP to denture base polymer and the mechanical properties of RRP-denture base polymer-material combination were evaluated. Also adhesion of BisGMA-TEGDMA-resin to RRP was determined. Different surface treatments were tested to improve the adhesion of BisGMA-TEGDMA-resin to RRP. Results were based on three-point bending testing, Vickers surface hardness test and scanning electron microscope analysis (SEM), which showed that no reliable adhesion between RRP and denture base polymer was formed. Addition of RRP filler to denture base polymer increased surface hardness and flexural modulus but flexural strength decreased. Results from the shear bond strength test and SEM revealed that adhesion between resin and RRP was possible to improve by surface treatment with dichloromethane (DCM) based primer and a new kind of adhesive surface can be designed. The current dentin bonding agents have good immediate bond strength, but in long term the bond strength may decrease due to the detrimental effect of water and perhaps by matrix metalloproteinases. This leads to problems in longevity of restorations. Current bonding agents use organic monomers. In this series of studies, RRP filled dentin primer was tested in order to decrease the water sorption of the monomer system of the primers. The properties of new dentin primer system were evaluated in vitro by comparing it to commercial etch and rinse adhesive system. The results from the contact angle measurements and SEM showed that experimental primer with RRP reinforcement provided similar resin infiltration to dentin collagen and formed the resin-dentin interface as the control primer. Microtensile bond strength test and SEM revealed that in short term water storing, RRP increased bond strength and primer with BMEP-monomer (bis[2-(methacryloyloxy)-ethyl]phosphate) and high solvent concentration provided comparable bonding properties to the commercial control primers. In long term water storing, the high solvent-monomer concentration of the experimental primers decreased bond strength. However, in low solvent-monomer concentration groups, the long-term water storing did not decrease the bond strength despite the existence of hydrophilic monomers which were used in the system. These studies demonstrated that new dentin primer system reached the mechanical properties of current traditional etch and rinse adhesive system in short time water storing. Improved properties can be achieved by further modifications of the monomer system. Studies of the adhesion of RRP to other polymers suggest that adhesion between RRP and other dental polymers is possible to obtain by certain surface treatments.
Resumo:
Maranhão state in Brazil presents a big potential for the cultivation of several oleaginous species, such as babassu, soybean, castor oil plant, etc... These vegetable oils can be transformed into biodiesel by the transesterification reaction in an alkaline medium, using methanol or ethanol. The biodiesel production from a blend of these alcohols is a way of adding the technical and economical advantages of methanol to the environmental advantages of ethanol. The optimized alcohol blend was observed to be a methanol/ethanol volume ratio of 80 % MeOH: 20 % EtOH. The ester content was of 98.70 %, a value higher than the target of the ANP, 96.5 % (m/m), and the biodiesel mass yield was of 95.32 %. This biodiesel fulfills the specifications of moisture, specific gravity, kinematic viscosity and percentages of free alcohols (methanol plus ethanol) and free glycerin.
Resumo:
The goal of this study was to find a new approach to modify chemically the properties of paper by improving fiber quality. This Master’s thesis includes the multiple polymer treatment in general and themeasurement methods with which the formation of multilayers and complexes can be noticed. The treatment by an oppositely charged dual polymer system is a good approach to increase paper strength. In this work, starch, a cationic polymer, and carboxymethyl cellulose (CMC), an anionic polymer, were used step-by-step to improve paper strength. The adsorption of cationic starch and CMC on cellulose fibers were analyzed via polyelectrolyte titration. The results showed that paper strength was enhanced slightly with a layer-by-layer assembly of the polymers. However, if the washing stage, which was required for layer-by-layer assembly, was eliminated, the starch/CMC complex was deposited on fibers more efficiently, and the paper strength was improved more significantly.
Resumo:
Current industrial atomic layer deposition (ALD) processes are almost wholly confined to glass or silicon substrates. For many industrial applications, deposition on polymer substrates will be necessary. Current deposition processes are also typically carried out at temperatures which are too high for polymers. If deposition temperatures in ALD can be reduced to the level applicable for polymers, it will open new interesting areas and applications for polymeric materials. The properties of polymers can be improved for example by coatings with functional and protective properties. Although the ALD has shown its capability to operate at low temperatures suitable for polymer substrates, there are other issues related to process efficiency and characteristics of different polymers where new knowledge will assist in developing industrially conceivable ALD processes. Lower deposition temperature in ALD generally means longer process times to facilitate the self limiting film growth mode characteristic to ALD. To improve process efficiency more reactive precursors are introduced into the process. For example in ALD oxide processes these can be more reactive oxidizers, such as ozone and oxygen radicals, to substitute the more conventionally used water. Although replacing water in the low temperature ALD with ozone or plasma generated oxygen radicals will enable the process times to be shortened, they may have unwanted effects both on the film growth and structure, and in some cases can form detrimental process conditions for the polymer substrate. Plasma assistance is a very promising approach to improve the process efficiency. The actual design and placement of the plasma source will have an effect on film growth characteristics and film structure that may retard the process efficiency development. Due to the fact that the lifetime of the radicals is limited, it requires the placement of the plasma source near to the film growth region. Conversely this subjects the substrate to exposure byother plasma species and electromagnetic radiation which sets requirements for plasma conditions optimization. In this thesis ALD has been used to modify, activate and functionalize the polymer surfaces for further improvement of polymer performance subject to application. The issues in ALD on polymers, both in thermal and plasma-assisted ALD will be further discussed.
Resumo:
Diesel fuel is used widely in Brazil and worldwide. On the other hand, the growing environmental awareness leads to a greater demand for renewable energy resources. Thus, this study aimed to evaluate the use of different blends of soybean (Glycine max) methyl biodiesel and diesel in an ignition compression engine with direct injection fuel. The tests were performed on an electric eddy current dynamometer, using the blends B10, B50 and B100, with 10; 50 e 100% of biodiesel, respectively, in comparison to the commercial diesel B5, with 5% of biodiesel added to the fossil diesel. The engine performance was analyzed trough the tractor power take off (PTO) for each fuel, and the best results obtained for the power and the specific fuel consumption, respectively, were: B5 (44.62 kW; 234.87 g kW-1 h-1); B10 (44.73 kW; 233.78 g kW-1 h-1); B50 (44.11 kW; 250.40 g kW-1 h-1) e B100 (43.40 kW; 263.63 g kW-1 h-1). The best performance occurred with the use of B5 and B10 fuel, without significant differences between these blends. The B100 fuel showed significant differences compared to the other fuels.
Resumo:
The water absorbent polymer effect on vegetative growth and production of Theoretical Recovery Sugar (TRS) of sugarcane cv. RB 86 7515 was evaluated on two field tests installed in randomized blocks, with four treatments and five repetitions. The polymer doses were 0; 4; 8 and 12 g m-1 of furrow (test 1) and 0; 1.4; 2.8 and 4.2 g m-1 of furrow (test 2). Test 1 (dec/2007 to may/2009) was implanted in a Distroferric Red Argisol soil in Presidente Prudente - State of São Paulo (SP), Brazil; and the test 2 (Aug/2008 to Aug/2009) was implanted in a Red Yellow Argisol soil in Lucélia - State of São Paulo (SP), Brazil. In test 2, there were no significant differences for any evaluated parameters. In both tests the polymer doses equal to or less than 4 g m-1 of furrow showed no significant effect on the evaluated parameters. In test 1, the polymer doses of 8 and 12 g m-1 of the conditioning polymer increased the number of tillers in stage II of development and led to the largest amount of straw. The gross income per hectare has positive relation with the polymer doses. The polymer had no significant effect on the sugarcane stems productivity and technological parameters.
Resumo:
The increasing demand for lightweight components has led to a huge exploitation of non-metallic materials such as polymers, fibers and elastomers in industrial and manufacturing processes. Recent trends towards cost effectiveness, weight reduction and production flexibility in industrial production and manufacturing processes has led to a growing interest in hybrid components where two or more dissimilar materials coexist to achieving specifically optimized characteristics. The importance of this research is to serve as a bridge to understanding the theories behind various joining techniques and the adaptation of the process for metal to polymer hybrid joints. Moreso, it helps companies to select the most productive and yet economical joining process for realization of lightweight metal to polymer hybrid components. This thesis is a literature review analyzing various materials that has been published on various joining methods for metal to polymer hybrid joints on the feasibility and eventual realization of the joint between these dissimilar materials. This study is aimed at theoretically evaluating the feasibility of joining processes between metal and plastic components by exploiting exhaustively joining and welding sources.
Resumo:
Papper kan anses vara ett av de mest använda materialen i det dagliga livet. Tidskrifter, tidningar, böcker och diverse förpackningar är några exempel på pappersbaserade produkter. Papperets egenskaper måste anpassas till användningsändamålet. En tidskrift kräver t.ex. hög ljushet, opacitet och en slät yta hos papperet, medan dessa egenskaper är mindre viktiga för en dagstidning. Allt tryckpapper behöver vissa mekaniska egenskaper för att tåla vidarebearbetning såsom kalandrering, tryckning och vikning. Man kan bestryka papper för att förbättra dess optiska egenskaper och tryckbarhetsegenskaper. Vid bestrykning appliceras en dispersion av mineralpigment och polymerbindemedel som ett tunt lager på papperets yta. Bestrykningsskiktet kan ses som ett komplext, poröst kompositmaterial som även bidrar till papperets mekaniska egenskaper och dess processerbarhet i diverse konverteringsoperationer. Kravet på framställning av förmånligt papper med tillräckliga styrkeegenskaper ställer allt högre krav på optimeringen av pappersbestrykningsskiktets egenskaper och produktionskostnader. Målet med detta arbete var att förstå sambandet mellan pigmentbestrykningsskiktets mikrostruktur och dess makroskopiska, mekaniska egenskaper. Resultaten visar att adhesionen i gränsytan mellan pigment och bindemedel är kritisk för bestrykningsskiktets förmåga att bära mekanisk belastning. Polära vätskor är vanliga i tryckfärger och kan, eftersom de påverkar syra/bas-interaktionerna mellan pigment och latexbindemedel, försvaga denna adhesion. Resultaten tyder på att ytstyrkan hos bestruket papper kan höjas genom användning av bifunktionella dispergeringsmedel för mineralpigment. Detta medför inbesparingar i pappersproduktionen eftersom mängden bindemedel, den dyraste komponenten i bestrykningsskiktet, kan minskas.
Resumo:
The main objective of the present study was to verify the approach on starch-gelatin blending for the paperboard coating formulations with enhanced barrier and mechanical properties. Based on that, another objective was to find out, how the approach will function with wood-based polysaccharides (CMC, EHEC and HPC) by analyzing their barrier properties and convertibility. The last objective was to find out, if pigments can be used in the composition of polysaccharide-protein blends without causing any negative effect on stated properties. The whole process chain of the barrier coating development was studied in the research. The methodology applied included pilot-scale coating and converting trials for the evaluation of mechanical properties of obtained coatings, namely their exposure to cracking with the loss of barrier properties. The results obtained indicated that the combination of starch with gelatin, in fact, improves the grease barrier properties and flexibility of starch-based coatings, thereby confirming the offered approach. The similar results were obtained for CMC, exhibited elevated barrier properties and surface coverage, proving that the approach also functions with wood-based polysaccharides. The introduction of equal amounts of talc gave various effects at different gelatin dosages on barrier properties of wood-based polysaccharides. Mainly, the elevation of grease barrier properties was observed. The convertibility of talc-filled coatings was not sufficient.
Effect of particle morphology on the mechanical and thermo-mechanical behavior of polymer composites
Resumo:
Fiber reinforced polymer composites have been used in many applications, such as in automobile, aerospace and naval industries, due basically to their high strength-to-weight and modulus-to-weight, among other properties. Even though particles are usually not able to lead to the level of reinforcement of fibers, particle reinforced polymer composites have been proposed for many new applications due to their low cost, easy fabrication and isotropic properties. In this work, polymer composites were prepared by incorporating glass particles of different morphologies on poly(aryl sulfones) matrices. Particles with aspect ratios equal to 1, 2.5 and 10 were used. The prepared composites were characterized using electron microscopy and thermal analysis. Mechanical properties of the composites were evaluated using a four-point bending test. The thermo-mechanical behavior of the obtained composites was also investigated. The results showed that the morphology of the particles alter significantly the mechanical properties of composites. Particles with larger values of aspect ratio led to large elastic modulus but low levels of strain at failure. This result was explained by modeling the thermo-mechanical behavior of the composites using a viscoelastic model. Parameters of the model, obtained from a Cole-Cole type of plot, demonstrated that interactions at the polymer-reinforcing agent interface were higher for composites with large aspect ratio particles. Higher levels of interactions at interfaces can lead to higher degrees of stress transfer and, consequently, to composites with large elastic modulus, as experimentally observed.
Resumo:
Fiber-reinforced composites (FRCs) are a new group of non-metallic biomaterials showing a growing popularity in many dental and medical applications. As an oral implant material, FRC is biocompatible in bone tissue environment. Soft tissue integration to FRC polymer material is unclear. This series of in vitro studies aimed at evaluating unidirectional E-glass FRC polymer in terms of mechanical, chemical, and biological properties in an attempt to develop a new non-metallic oral implant abutment alternative. Two different types of substrates were investigated: (a) Plain polymer (BisGMA 50%–TEGDMA 50%) and (b) Unidirectional FRC. The mechanical behavior of high fiber-density FRCs was assessed using a three-point bending test. Surface characterization was performed using scanning electron and spinning disk confocal microscopes. The surface wettability/energy was determined using sessile drop method. The blood response, including blood-clotting ability and platelet morphology was evaluated. Human gingival fibroblast cell responses - adhesion kinetics, adhesion strength, and proliferation activity - were studied in cell culture environment using routine test conditions. A novel tissue culture method was developed and used to evaluate porcine gingival tissue graft attachment and growth on the experimental composite implants. The analysis of the mechanical properties showed that there is a direct proportionality in the relationship between E-glass fiber volume fraction and toughness, modulus of elasticity, and load bearing capacity; however, flexural strength did not show significant improvement when high fiber-density FRC is used. FRCs showed moderate hydrophilic properties owing to the presence of exposed glass fibers on the polymer surface. Blood-clotting time was shorter on FRC substrates than on plain polymer. The FRC substrates also showed higher platelet activation state than plain polymer substrates. Fibroblast cell adhesion strength and proliferation rate were highly pronounced on FRCs. A tissue culture study revealed that gingival epithelium and connective tissue established an immediate close contact with both plain polymer and FRC implants. However, FRC seemed to guide epithelial migration outwards from the tissue/implant interface. Due to the anisotropic and hydrophilic nature of FRC, it can be concluded that this material enhances biological events related with soft tissue integration on oral implant surface.
Resumo:
Pressure-driven and temperature-driven transitions of two thermoresponsive polymers, poly(N-isopropylacrylamide) (pNIPAM) and poly(N-vinylisobutyramide) (pNVIBA)), in both a soluble linear polymer form and a cross-linked hydro-gel form, were examined by a dynamic light-scattering method and direct microscopic observation, respectively. Their behavior was compared with that of protein systems. Changes in some characteristic parameters in the time-intensity correlation functions of dynamic light-scattering measurement of aqueous solutions of pNIPAM at various pressures and temperatures showed no essential differences during temperature and pressure scanning and, as a whole, the motions of polymers in aqueous solutions were similar in two types of transitions until chain shrinkage occurred. The gels (cross-linked polymer gels) prepared from the thermoresponsive polymers also showed similar volume transitions responding to the pressure and temperature increase. In temperature transitions, however, gels showed drastic volume shrinkage with loss of transparency, while pressure-induced transition showed a slow recovery of transparency while keeping the size, after first transient drastic volume shrinkage with loss of transparency. At a temperature slightly higher than the transition under atmospheric temperature, so-called reentry of the volume change and recovery of the transparency were observed during the pressure-increasing process, which implies much smaller aggregation or non-aggregated collapsed polymer chains in the gel at higher pressures, indicating a certain mechanistic difference of the dehydration processes induced by temperature and pressure.
Resumo:
Vero cells, a cell line established from the kidney of the African green monkey (Cercopithecus aethiops), were cultured in F-10 Ham medium supplemented with 10% fetal calf serum at 37°C on membranes of poly(L-lactic acid) (PLLA), poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and their blends in different proportions (100/0, 60/40, 50/50, 40/60, and 0/100). The present study evaluated morphology of cells grown on different polymeric substrates after 24 h of culture by scanning electron microscopy. Cell adhesion was also analyzed after 2 h of inoculation. For cell growth evaluation, the cells were maintained in culture for 48, 120, 240, and 360 h. For cytochemical study, the cells were cultured for 120 or 240 h, fixed, processed for histological analysis, and stained with Toluidine blue, pH 4.0, and Xylidine ponceau, pH 2.5. Our results showed that cell adhesion was better when 60/40 and 50/50 blends were used although cells were able to grow and proliferate on all blends tested. When using PLLA/PHBV (50/50) slightly flattened cells were observed on porous and smooth areas. PLLA/PHBV (40/60) blends presented flattened cells on smooth areas. PLLA/PHBV (0/100), which presented no pores, also supported spreading cells interconnected by thin filaments. Histological sections showed that cells grew as a confluent monolayer on different substrates. Cytochemical analysis showed basophilic cells, indicating a large amount of RNA and proteins. Hence, we detected changes in cell morphology induced by alterations in blend proportions. This suggests that the cells changed their differentiation pattern when on various PLLA/PHBV blend surfaces.
Resumo:
The purpose of this research was to combine the use of the component blend design to the response surface methodology, in order to foresee the effect of ternary apple juice blends (Catarina, Granny Smith and Pink Lady cultivars) on the physical-chemical characteristics of musts appointed to sparkling drink elaboration. Twelve mixes were made (three individual samples, three binary mixes and six ternary mixes), analyzed on the content of total reducing sugars, total titratable acidity and phenolic compounds; and adjusted, respectively, to the linear, quadratic and special cubic models. The results were organized in ternary charts of surface response and, from the overlap of these charts, it was determined a viable region which delimited the range of apple juice compositions that make musts physically and chemically suitable to sparkling drink elaboration. To represent the various possible combinations, the central point of the triangular area of the viable region was calculated and, this point, which represents the proportions of 23.22% of Catarina, 66.23% of Granny Smith and 10.55% of Pink Lady cultivars, was chosen to constitute the formulation of the must to be used in the elaboration of apple sparkling drinks.
Resumo:
The development of processed foods requires the understanding of the phenomena that dictate the ingredient interactions normally used in food formulations, as well as the effects of the numerous operations involved in the processing of the final product. In ice creams, sugars are responsible for taste, but they also affect the freezing behavior and viscosity of processed mixes. Components such as fats influence mechanical properties, melting resistance, and palatability of final products. The objective was to study the technological effects of different sugars and fats on the structure of ice cream formulations. Fructose syrup was used as a substitute for glucose syrup in blends with sucrose, and palm fat was employed as an alternative to hydrogenated vegetable fat. The analysis of variance showed significant differences in chemical compositions. Hygroscopicity of fructose syrup increased the solids content in the formulations. Melting rate and overrun were higher in products added with this sugar. Palm fat caused changes in melting ranges of formulations, and higher melting rate was observed in the combination of palm fat and fructose syrup.