967 resultados para IGF-I and cell migration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

RPE65 is a retinoid isomerase required for the production of 11-cis-retinal, the chromophore of both cone and rod visual pigments. We recently established an R91W knock-in mouse strain as homologous animal model for patients afflicted by this mutation in RPE65. These mice have impaired vision and can only synthesize minute amounts of 11-cis-retinal. Here, we investigated the consequences of this chromophore insufficiency on cone function and pathophysiology. We found that the R91W mutation caused cone opsin mislocalization and progressive geographic cone atrophy. Remnant visual function was mostly mediated by rods. Ablation of rod opsin corrected the localization of cone opsin and improved cone retinal function. Thus, our analyses indicate that under conditions of limited chromophore supply rods and cones compete for 11-cis-retinal that derives from regeneration pathway(s) which are reliant on RPE65. Due to their higher number and the instability of cone opsin, rods are privileged under this condition while cones suffer chromophore deficiency and degenerate. These findings reinforce the notion that in patients any effective gene therapy with RPE65 needs to target the cone-rich macula directly to locally restore the cones' chromophore supply outside the reach of rods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres) of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1) and cancer stem cell markers (ABCG2, CD44 and ALDH1) genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7). Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Septins are a conserved family of GTPases that regulate important cellular processes such as cell wall integrity, and septation in fungi. The requirement of septins for virulence has been demonstrated in the human pathogenic yeasts Candida albicans and Cryptococcus neoformans, as well as the plant pathogen Magnaporthe oryzae. Aspergillus spp. contains five genes encoding for septins (aspA-E). While the importance of septins AspA, AspB, AspC, and AspE for growth and conidiation has been elucidated in the filamentous fungal model Aspergillus nidulans, nothing is known on the role of septins in growth and virulence in the human pathogen Aspergillus fumigatus. Here we deleted all five A. fumigatus septins, and generated certain double and triple septin deletion strains. Phenotypic analyses revealed that while all the septins are dispensable in normal growth conditions, AspA, AspB, AspC and AspE are required for regular septation. Furthermore, deletion of only the core septin genes significantly reduced conidiation. Concomitant with the absence of an electron-dense outer conidial wall, the ΔaspB strain was also sensitive to anti-cell wall agents. Infection with the ΔaspB strain in a Galleria mellonella model of invasive aspergillosis showed hypervirulence, but no virulence difference was noted when compared to the wild-type strain in a murine model of invasive aspergillosis. Although the deletion of aspB resulted in increased release of TNF-α from the macrophages, no significant inflammation differences in lung histology was noted between the ΔaspB strain and the wild-type strain. Taken together, these results point to the importance of septins in A. fumigatus growth, but not virulence in a murine model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To compare lower incisor dentoalveolar compensation and mandible symphysis morphology among Class I and Class III malocclusion patients with different facial vertical skeletal patterns. Materials and Methods: Lower incisor extrusion and inclination, as well as buccal (LA) and lingual (LP) cortex depth, and mandibular symphysis height (LH) were measured in 107 lateral cephalometric x-rays of adult patients without prior orthodontic treatment. In addition, malocclusion type (Class I or III) and facial vertical skeletal pattern were considered. Through a principal component analysis (PCA) related variables were reduced. Simple regression equation and multivariate analyses of variance were also used. Results: Incisor mandibular plane angle (P < .001) and extrusion (P  =  .03) values showed significant differences between the sagittal malocclusion groups. Variations in the mandibular plane have a negative correlation with LA (Class I P  =  .03 and Class III P  =  .01) and a positive correlation with LH (Class I P  =  .01 and Class III P  =  .02) in both groups. Within the Class III group, there was a negative correlation between the mandibular plane and LP (P  =  .02). PCA showed that the tendency toward a long face causes the symphysis to elongate and narrow. In Class III, alveolar narrowing is also found in normal faces. Conclusions: Vertical facial pattern is a significant factor in mandibular symphysis alveolar morphology and lower incisor positioning, both for Class I and Class III patients. Short-faced Class III patients have a widened alveolar bone. However, for long-faced and normal-faced Class III, natural compensation elongates the symphysis and influences lower incisor position.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efavirenz (EFV) is principally metabolized by CYP2B6 to 8-hydroxy-efavirenz (8OH-EFV) and to a lesser extent by CYP2A6 to 7-hydroxy-efavirenz (7OH-EFV). So far, most metabolite profile analyses have been restricted to 8OH-EFV, 7OH-EFV, and EFV-N-glucuronide, even though these metabolites represent a minor percentage of EFV metabolites present in vivo. We have performed a quantitative phase I and II metabolite profile analysis by tandem mass spectrometry of plasma, cerebrospinal fluid (CSF), and urine samples in 71 human immunodeficiency virus patients taking efavirenz, prior to and after enzymatic (glucuronidase and sulfatase) hydrolysis. We have shown that phase II metabolites constitute the major part of the known circulating efavirenz species in humans. The 8OH-EFV-glucuronide (gln) and 8OH-EFV-sulfate (identified for the first time) in humans were found to be 64- and 7-fold higher than the parent 8OH-EFV, respectively. In individuals (n = 67) genotyped for CYP2B6, 2A6, and CYP3A metabolic pathways, 8OH-EFV/EFV ratios in plasma were an index of CYP2B6 phenotypic activity (P < 0.0001), which was also reflected by phase II metabolites 8OH-EFV-glucuronide/EFV and 8OH-EFV-sulfate/EFV ratios. Neither EFV nor 8OH-EFV, nor any other considered metabolites in plasma were associated with an increased risk of central nervous system (CNS) toxicity. In CSF, 8OH-EFV levels were not influenced by CYP2B6 genotypes and did not predict CNS toxicity. The phase II metabolites 8OH-EFV-gln, 8OH-EFV-sulfate, and 7OH-EFV-gln were present in CSF at 2- to 9-fold higher concentrations than 8OH-EFV. The potential contribution of known and previously unreported EFV metabolites in CSF to the neuropsychological effects of efavirenz needs to be further examined in larger cohort studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The aim of the study was to combine clinical results from the European Cohort of the REVERSE study and costs associated with the addition of cardiac resynchronization therapy (CRT) to optimal medical therapy (OMT) in patients with mild symptomatic (NYHA I-II) or asymptomatic left ventricular dysfunction and markers of cardiac dyssynchrony in Spain. Methods: A Markov model was developed with CRT + OMT (CRT-ON) versus OMT only (CRT-OFF) based on a retrospective cost-effectiveness analysis. Raw data was derived from literature and expert opinion, reflecting clinical and economic consequences of patient"s management in Spain. Time horizon was 10 years. Both costs (euro 2010) and effects were discounted at 3 percent per annum. Results: CRT-ON showed higher total costs than CRT-OFF; however, CRT reduced the length of hospitalization in ICU by 94 percent (0.006 versus 0.091 days) and general ward in by 34 percent (0.705 versus 1.076 days). Surviving CRT-ON patients (88.2 percent versus 77.5 percent) remained in better functional class longer, and they achieved an improvement of 0.9 life years (LYGs) and 0.77 years quality-adjusted life years (QALYs). CRT-ON proved to be cost-effective after 6 years, except for the 7th year due to battery depletion. At 10 years, the results were 18,431 per LYG and 21,500 per QALY gained. Probabilistic sensitivity analysis showed CRT-ON was cost-effective in 75.4 percent of the cases at 10 years. Conclusions: The use of CRT added to OMT represents an efficient use of resources in patients suffering from heart failure in NYHA functional classes I and II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two complexes of Rh(I) and Pd(II) with chloride and tridecylamine ligands were obtained and characterized by Elementary Analysis and by XPS and FTIR spectroscopies. Complexes anchored on γ-Al2O3 were tested in the styrene semi-hydrogenation reaction carried out in the absence or presence of a sulfur poison. Although both low loaded catalysts were highly selective, the Pd(II) complex was three times more active than the Rh(I) complex. The rhodium complex was more sulfur resistant but less active than the palladium complex. Differences in conversion and sulfur resistance between both complexes could be related to electronic and/or geometric effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleus is a membrane enclosed organelle containing most of the genetic information of the cell in the form of chromatin. The nucleus, which can be divided into many sub-organelles such as the nucleoli, the Cajal bodies and the nuclear lamina, is the site for several essential cellular functions such as the DNA replication and its regulation and most of the RNA synthesis and processing. The nucleus is often affected in disease: the size and the shape of the nucleus, the chromatin distribution and the size of the nucleoli have remained the basis for the grading of several cancers. The maintenance of the vertebrate body shape depends on the skeleton. Similarly, in a smaller context, the shape of the cell and the nucleus are mainly regulated by the cytoskeletal and nucleoskeletal elements. The nuclear matrix, which by definition is a detergent, DNase and salt resistant proteinaceous nuclear structure, has been suggested to form the nucleoskeleton responsible for the nuclear integrity. Nuclear mitotic apparatus protein, NuMA, a component of the nuclear matrix, is better known for its mitotic spindle organizing function. NuMA is one of the nuclear matrix proteins suggested to participate in the maintenance of the nuclear integrity during interphase but its interphase function has not been solved to date. This thesis study concentrated on the role of NuMA and the nuclear matrix as structural and functional components of the interphase nucleus. The first two studies clarified the essential role of caspase-3 in the disintegration of the nuclear structures during apoptosis. The second study also showed NuMA and chromatin to co-elute from cells in significant amounts and the apoptotic cleavage of NuMA was clarified to have an important role in the dissociation of NuMA from the chromatin. The third study concentrated on the interphase function of NuMA showing NuMA depletion to result in cell cycle arrest and the cytoplasmic relocalization of NuMA interaction partner GAS41. We suggest that the relocalization of the transcription factor GAS41 may mediate the cell cycle arrest. Thus, this study has given new aspects in the interactions of NuMA, chromatin and the nuclear matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the Tropic of Capricorn to Equator, the seasonality of domestic cat is known to be absent, i.e., these animals are considered non-seasonal breeders at these regions. We hypothesized that this particularity might have some influence on in vitro embryo production. The aim of this experiment was to determine the percentage of cleavage and morulae and blastocyst formation produced from oocytes recovered from queen ovaries of three distinct status - follicular, luteal or inactive - during two different reproductive seasons experienced by cats in southeast of Brazil (22°53'09" S and 48°26'42" W) - non breeding season (NBS), comprehending January to March; and breeding season (BS), August to October. Thirty queens were neutered. Ovaries were classified according to their status and were sliced in PBS for cumulus oocyte complex (COC) releasing. Grade I COC were washed three times in H-MEM supplemented with BSA, glutamine, sodium pyruvate, cysteine, streptomycin and penicillin. Oocytes were incubated in groups of 20-30 in 400µL of DMEM supplemented with FSH, LH, estradiol, IGF-I and basic fibroblast growth factor under mineral oil for 30 or 36 hours at 38°C in humidified environment of 5% de O2, 5% CO2 and 90% N2. COC were fertilized in Ham's F-10 medium supplemented with BSA, cysteine, pyruvate and streptomycin/penicillin (culture medium) with fresh semen selected through swim up technique. Eighteen hours later, the presumptive zygotes were denuded, the percentage of cleavage was determined and every 10 zygotes were transferred to 100mL drops of culture medium for culture during three days. After 72 hours of culture the percentage of morulae formation was evaluated and these structures were transferred to drops of the same culture medium. At the eighth day of culture blastocyst formation was analyzed. During NBS, from a total of 272 (inactive), 162 (luteal) and 134 (follicular) fertilized oocytes, the percentage of cleaved zygotes, morulae and blastocysts derived from inactive ovaries were 24.63, 16.54 and 8.09 respectively; for those derived from luteal ovaries, the percentage was 21.6, 12.96 and 8.64, and for those from follicular ovaries, they were 24.62, 16.41 and 8.21. Considering BS, from a total of 102 (inactive), 198 (luteal) and 86 (follicular) fertilized oocytes, the relative frequency (%) of cleaved zygotes, morulae and blastocysts derived from inactive ovaries were 64.7, 41.17 and 23.53 respectively; for those derived from luteal ovaries, the percentage was 64.14, 40.41 and 23.73, and for those from follicular ovaries, they were 63.95, 39.54 and 24.41. The results of this experiment demonstrate that no statistically significant difference (P<0.05) was verified in the frequency of cleaved embryos and morulae and blastocyst formation when comparing the three ovarian conditions in the same season. However the breeding season presented better results considering cleavage and morulae and blastocyst formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.