928 resultados para Hypergraph Partitioning
Resumo:
Oxidation of diaryl, aryl alkyl, and dialkyl thioketones by singlet oxygen generated via self-sensitization and other independent methods yielded the corresponding ketone and sulfine in varying amounts. A zwitterionic/ diradical intermediate arising out of the primary interaction of singlet oxygen with the thiocarbonyl chromophore is believed to be the common intermediate for the ketone and sulfine. While closure of the zwitterion/diradical to give 1,2,3-dioxathietane would lead to the ketone, competing oxygen elimination is believed to lead to the sulfine. This partitioning is governed by steric and electronic factors operating on the zwitterionic/diradical intermediate.
Resumo:
One of the pathways for transfer of cadmium (Cd) through the food chain is addition of urban wastewater solids (biosolids) to soil, and many countries have restrictions on biosolid use to minimize crop Cd contamination. The basis of these restrictions often lies in laboratory or glasshouse experimentation of soil-plant transfer of Cd, but these studies are confounded by artefacts from growing crops in controlled laboratory conditions. This study examined soil to plant (wheat grain) transfer of Cd under a wide range of field environments under typical agronomic conditions, and compared the solubility and bioavailability of Cd in biosolids to soluble Cd salts. Solubility of biosolid Cd (measured by examining Cd partitioning between soil and soil solution) was found to be equal to or greater than that of soluble Cd salts, possibly due to competing ions added with the biosolids. Conversely, bioavailability of Cd to wheat and transfer to grain was less than that of soluble Cd salts, possibly due to addition of Zn with the biosolids, causing reduced plant uptake or grain loading, or due to complexation of soluble Cd2+ by dissolved organic matter.
Resumo:
Sampling devices differing greatly in shape, size and operating condition have been used to collect air samples to determine rates of emission of volatile substances, including odour. However, physical chemistry principles, in particular the partitioning of volatile substances between two phases as explained by Henrys Law and the relationship between wind velocity and emission rate, suggests that different devices cannot be expected to provide equivalent emission rate estimates. Thus several problems are associated with the use of static and dynamic emission chambers, but the more turbulent devices such as wind tunnels do not appear to be subject to these problems. In general, the ability to relate emission rate estimates obtained from wind tunnel measurements to those derived from device-independent techniques supports the use of wind tunnels to determine emission rates that can be used as input data for dispersion models.
Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids
Resumo:
To protect terrestrial ecosystems and humans from contaminants many countries and jurisdictions have developed soil quality guidelines (SQGs). This study proposes a new framework to derive SQGs and guidelines for amended soils and uses a case study based on phytotoxicity data of copper (Cu) and zinc (Zn) from field studies to illustrate how the framework could be applied. The proposed framework uses normalisation relationships to account for the effects of soil properties on toxicity data followed by a species sensitivity distribution (SSD) method to calculate a soil added contaminant limit (soil ACL) for a standard soil. The normalisation equations are then used to calculate soil ACLs for other soils. A soil amendment availability factor (SAAF) is then calculated as the toxicity and bioavailability of pure contaminants and contaminants in amendments can be different. The SAAF is used to modify soil ACLs to ACLs for amended soils. The framework was then used to calculate soil ACLs for copper (Cu) and zinc (Zn). For soils with pH of 4-8 and OC content of 1-6%, the ACLs range from 8 mg/kg to 970 mg/kg added Cu. The SAAF for Cu was pH dependant and varied from 1.44 at pH 4 to 2.15 at pH 8. For soils with pH of 4-8 and OC content of 1-6%, the ACLs for amended soils range from 11 mg/kg to 2080 mg/kg added Cu. For soils with pH of 4-8 and a CEC from 5-60, the ACLs for Zn ranged from 21 to 1470 mg/kg added Zn. A SAAF of one was used for Zn as it concentrations in plant tissue and soil to water partitioning showed no difference between biosolids and soluble Zn salt treatments, indicating that Zn from biosolids and Zn salts are equally bioavailable to plants.
Resumo:
Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs) in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA) form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments.
Resumo:
Oxidation of diaryl, aryl alkyl, and dialkyl thioketones by singlet oxygen generated via self-sensitization and other independent methods yielded the corresponding ketone and sulfine in varying amounts. A zwitterionic/ diradical intermediate arising out of the primary interaction of singlet oxygen with the thiocarbonyl chromophore is believed to be the common intermediate for the ketone and sulfine. While closure of the zwitterion/diradical to give 1,2,3-dioxathietane would lead to the ketone, competing oxygen elimination is believed to lead to the sulfine. This partitioning is governed by steric and electronic factors operating on the zwitterionic/diradical intermediate.
Resumo:
An assessment of the relative influences of management and environment on the composition of floodplain grasslands of north-western New South Wales was made using a regional vegetation survey sampling a range of land tenures (e. g. private property, travelling stock routes and nature reserves). A total of 364 taxa belonging to 55 different plant families was recorded. Partitioning of variance with redundancy analysis determined that environmental variables accounted for a greater proportion (61.3%) of the explained variance in species composition than disturbance-related variables (37.6%). Soil type (and fertility), sampling time and rainfall had a strong influence on species composition and there were also east-west variations in composition across the region. Of the disturbance-related variables, cultivation, stocking rate and flooding frequency were all influential. Total, native, forb, shrub and subshrub richness were positively correlated with increasing time since cultivation. Flood frequency was positively correlated with graminoid species richness and was negatively correlated with total and forb species richness. Site species richness was also influenced by environmental variables (e. g. soil type and rainfall). Despite the resilience of these grasslands, some forms of severe disturbance (e. g. several years of cultivation) can result in removal of some dominant perennial grasses (e. g. Astrebla spp.) and an increase in disturbance specialists. A simple heuristic transitional model is proposed that has conceptual thresholds for plant biodiversity status. This knowledge representation may be used to assist in the management of these grasslands by defining four broad levels of community richness and the drivers that change this status.
Resumo:
Buffel grass [Pennisetum ciliare (L.) Link] has been widely introduced in the Australian rangelands as a consequence of its value for productive grazing, but tends to competitively establish in non-target areas such as remnant vegetation. In this study, we examined the influence landscape-scale and local-scale variables had upon the distribution of buffel grass in remnant poplar box (Eucalyptus populnea F. Muell.) dominant woodland fragments in the Brigalow Bioregion, Queensland. Buffel grass and variables thought to influence its distribution in the region were measured at 60 sites, which were selected based on the amount of native woodland retained in the landscape and patch size. An information-theoretic modelling approach and hierarchical partitioning revealed that the most influential variable was the percent of retained vegetation within a 1-km spatial extent. From this, we identified a critical threshold of similar to 30% retained vegetation in the landscape, above which the model predicted buffel grass was not likely to occur in a woodland fragment. Other explanatory variables in the model were site based, and included litter cover and long-term rainfall. Given the paucity of information on the effect of buffel grass upon biodiversity values, we undertook exploratory analyses to determine whether buffel grass cover influenced the distribution of grass, forb and reptile species. We detected some trends; hierarchical partitioning revealed that buffel grass cover was the most important explanatory variable describing habitat preferences of four reptile species. However, establishing causal links - particularly between native grass and forb species and buffel grass - was problematic owing to possible confounding with grazing pressure. We conclude with a set of management recommendations aimed at reducing the spread of buffel grass into remnant woodlands.
Resumo:
Stay-green, an important trait for grain yield of sorghum grown under water limitation, has been associated with a high leaf nitrogen content at the start of grain filling. This study quantifies the N demand of leaves and stems and explores effects of N stress on the N balance of vegetative plant parts of three sorghum hybrids differing in potential crop height. The hybrids were grown under well-watered conditions at three levels of N supply. Vertical profiles of biomass and N% of leaves and stems, together with leaf size and number, and specific leaf nitrogen (SLN), were measured at regular intervals. The hybrids had similar minimum but different critical and maximum SLN, associated with differences in leaf size and N partitioning, the latter associated with differences in plant height. N demand of expanding new leaves was represented by critical SLN, and structural stem N demand by minimum stem N%. The fraction of N partitioned to leaf blades increased under N stress. A framework for N dynamics of leaves and stems is developed that captures effects of N stress and genotype on N partitioning and on critical and maximum SLN.
Resumo:
The present study aims to elucidate the modifications in the structure and functionality of the phospholipid matrix of biological membranes brought about by free radical-mediated oxidative damage of its molecular constituents. To this end, the surface properties of two oxidatively modified phospholipids bearing an aldehyde or carboxyl function at the end of truncated sn-2 acyl chain were studied using a Langmuir balance. The results obtained reveal both oxidized species to have a significant impact on the structural dynamics of phospholipid monolayers, as illustrated by the progressive changes in force-area isotherms with increasing mole fraction of the oxidized lipid component. Moreover, surface potential measurements revealed considerable modifications in the electric properties of oxidized phospholipid containing monolayers during film compression, suggesting a packing state-controlled reorientation of the intramolecular electric dipoles of the lipid headgroups and acyl chains. Based on the above findings, a model describing the conformational state of oxidized phospholipid molecules in biological membranes is proposed, involving the protrusion of the acyl chains bearing the polar functional groups out from the hydrocarbon phase to the surrounding aqueous medium. Oxidative modifications alter profoundly the physicochemical properties of unsaturated phospholipids and are therefore readily anticipated to have important implications for their interactions with membrane-associating molecules. Along these lines, the carboxyl group bearing lipid was observed to bind avidly the peripheral membrane protein cytochrome c. The binding was reversed following increase in ionic strength or addition of polyanionic ATP, thus suggesting it to be driven by electrostatic interactions between cationic residues of the protein and the deprotonated lipid carboxyl exposed to the aqueous phase. The presence of aldehyde function bearing oxidized phospholipid was observed to enhance the intercalation of four antimicrobial peptides into phospholipid monolayers and liposomal bilayers. Partitioning of the peptides to monolayers was markedly attenuated by the aldehyde scavenger methoxyamine, revealing it to be mediated by the carbonyl moiety possibly through efficient hydrogen bonding or, alternatively, formation of covalent adduct in form of a Schiff base between the lipid aldehydes and primary amine groups of the peptide molecules. Lastly, both oxidized phospholipid species were observed to bind with high affinity three small membrane-partitioning therapeutic agents, viz. chlorpromazine, haloperidol, and doxorubicin. In conclusion, the results of studies conducted using biomimetic model systems support the notion that oxidative damage influences the molecular architecture as well as the bulk physicochemical properties of phospholipid membranes. Further, common polar functional groups carried by phospholipids subjected to oxidation were observed to act as molecular binding sites at the lipid-water interface. It is thus plausible that oxidized phospholipid species may elicit cellular level effects by modulating integration of various membrane-embedded and surface-associated proteins and peptides, whose conformational state, oligomerization, and functionality is known to be controlled by highly specific lipid-protein interactions and proper physical state of the membrane environment.
Resumo:
The white-spotted eagle ray Aetobatus narinari is a species complex that occurs circumglobally throughout warm-temperate waters. Aetobatus narinari is semi-pelagic and large (up to 300 cm disc width), suggesting high dispersal capabilities and gene flow on a wide spatial scale. Sequence data from two mitochondrial genes, cytochrome b (cytb) and NADH dehydrogenase subunit 4 (ND4), were used to determine the genetic variability within and among 18 sampling locations in the central Indo-Pacific biogeographical region. Populations in the Indo-Pacific were highly genetically structured with c. 70% of the total genetic variation found among three geographical regions (East China Sea, Southeast Asia and Australia). FST was 0.64 for cytb and 0.53 for ND4, with φST values being even larger, that is, 0.78 for cytb and 0.65 for ND4. This high-level genetic partitioning provides strong evidence against extensive gene flow in A. narinari. The degree of genetic population structuring in the Indo-Pacific was similar to that found on a global scale. Global FST was 0.63 for cytb and 0.57 for ND4, and global φST values were 0.94 for cytb and 0.82 for ND4. This suggests that the A. narinari complex may be more speciose than the two or three species proposed to date. Further sampling and genetic analyses are likely to uncover the ‘evolutionarily significant’ and ‘management’ units that are critical to determine the susceptibilities of individual populations to regional fishing pressures and to provide advice on management options. Network analyses showed a close genetic relationship between haplotypes from the central Indo-Pacific and South Africa, providing support for a proposed dispersal pathway from the possible centre of origin of the A. narinari species complex in the Indo-Pacific into the Atlantic Ocean.
Resumo:
The StreamIt programming model has been proposed to exploit parallelism in streaming applications oil general purpose multicore architectures. The StreamIt graphs describe task, data and pipeline parallelism which can be exploited on accelerators such as Graphics Processing Units (GPUs) or CellBE which support abundant parallelism in hardware. In this paper, we describe a novel method to orchestrate the execution of if StreamIt program oil a multicore platform equipped with an accelerator. The proposed approach identifies, using profiling, the relative benefits of executing a task oil the superscalar CPU cores and the accelerator. We formulate the problem of partitioning the work between the CPU cores and the GPU, taking into account the latencies for data transfers and the required buffer layout transformations associated with the partitioning, as all integrated Integer Linear Program (ILP) which can then be solved by an ILP solver. We also propose an efficient heuristic algorithm for the work-partitioning between the CPU and the GPU, which provides solutions which are within 9.05% of the optimal solution on an average across the benchmark Suite. The partitioned tasks are then software pipelined to execute oil the multiple CPU cores and the Streaming Multiprocessors (SMs) of the GPU. The software pipelining algorithm orchestrates the execution between CPU cores and the GPU by emitting the code for the CPU and the GPU, and the code for the required data transfers. Our experiments on a platform with 8 CPU cores and a GeForce 8800 GTS 512 GPU show a geometric mean speedup of 6.94X with it maximum of 51.96X over it single threaded CPU execution across the StreamIt benchmarks. This is a 18.9% improvement over it partitioning strategy that maps only the filters that cannot be executed oil the GPU - the filters with state that is persistent across firings - onto the CPU.
Resumo:
Database schemes can be viewed as hypergraphs with individual relation schemes corresponding to the edges of a hypergraph. Under this setting, a new class of "acyclic" database schemes was recently introduced and was shown to have a claim to a number of desirable properties. However, unlike the case of ordinary undirected graphs, there are several unequivalent notions of acyclicity of hypergraphs. Of special interest among these are agr-, beta-, and gamma-, degrees of acyclicity, each characterizing an equivalence class of desirable properties for database schemes, represented as hypergraphs. In this paper, two complementary approaches to designing beta-acyclic database schemes have been presented. For the first part, a new notion called "independent cycle" is introduced. Based on this, a criterion for beta-acyclicity is developed and is shown equivalent to the existing definitions of beta-acyclicity. From this and the concept of the dual of a hypergraph, an efficient algorithm for testing beta-acyclicity is developed. As for the second part, a procedure is evolved for top-down generation of beta-acyclic schemes and its correctness is established. Finally, extensions and applications of ideas are described.
Resumo:
Many novel computer architectures like array and multiprocessors which achieve high performance through the use of concurrency exploit variations of the von Neumann model of computation. The effective utilization of the machines makes special demands on programmers and their programming languages, such as the structuring of data into vectors or the partitioning of programs into concurrent processes. In comparison, the data flow model of computation demands only that the principle of structured programming be followed. A data flow program, often represented as a data flow graph, is a program that expresses a computation by indicating the data dependencies among operators. A data flow computer is a machine designed to take advantage of concurrency in data flow graphs by executing data independent operations in parallel. In this paper, we discuss the design of a high level language (DFL: Data Flow Language) suitable for data flow computers. Some sample procedures in DFL are presented. The implementation aspects have not been discussed in detail since there are no new problems encountered. The language DFL embodies the concepts of functional programming, but in appearance closely resembles Pascal. The language is a better vehicle than the data flow graph for expressing a parallel algorithm. The compiler has been implemented on a DEC 1090 system in Pascal.
Variation in tracheid cross-sectional dimensions and wood viscoelasticity extent and control methods
Resumo:
Printing papers have been the main product of the Finnish paper industry. To improve properties and economy of printing papers, controlling of tracheid cross-sectional dimensions and wood viscoelasticity are examined in this study. Controlling is understood as any procedure which yields raw material classes with distinct properties and small internal variation. Tracheid cross-sectional dimensions, i.e., cell wall thickness and radial and tangential diameters can be controlled with methods such as sorting wood into pulpwood and sawmill chips, sorting of logs according to tree social status and fractionation of fibres. These control methods were analysed in this study with simulations, which were based on measured tracheid cross-sectional dimensions. A SilviScan device was used to measure the data set from five Norway spruce (Picea abies) and five Scots pine (Pinus sylvestris) trunks. The simulation results indicate that the sawmill chips and top pulpwood assortments have quite similar cross-sectional dimensions. Norway spruce and Scots pine are on average also relatively similar in their cross-sectional dimensions. The distributions of these species are somewhat different, but from a practical point of view, the differences are probably of minor importance. The controlling of tracheid cross-sectional dimensions can be done most efficiently with methods that can separate fibres into earlywood and latewood. Sorting of logs or partitioning of logs into juvenile and mature wood were markedly less efficient control methods than fractionation of fibres. Wood viscoelasticity affects energy consumption in mechanical pulping, and is thus an interesting control target when improving energy efficiency of the process. A literature study was made to evaluate the possibility of using viscoelasticity in controlling. The study indicates that there is considerable variation in viscoelastic properties within tree species, but unfortunately, the viscoelastic properties of important raw material lots such as top pulpwood or sawmill chips are not known. Viscoelastic properties of wood depend mainly on lignin, but also on microfibrillar angle, width of cellulose crystals and tracheid cross-sectional dimensions.