984 resultados para Humoral rejection
Resumo:
This paper is concerned with assessing the interference rejection capabilities of linear and circular array of dipoles that can be part of a base station of a code-division multiple-access cellular communication system. The performance criteria for signal-to-interference ratio (SIR) improvement employed in this paper is the spatial interference suppression coefficient. We first derive an expression for this figure of merit and then analyze and compare the SIR performance of the two types of arrays. For a linear array, we quantitatively assess the degradation in SIR performance, as we move from array broadside to array end-fire direction. In addition, the effect of mutual coupling is taken into account.
Resumo:
Although immune responses leading to rejection of transplantable tumours have been well studied, requirements for epithelial tumour rejection are unclear. Here, we use human growth hormone (hGH) expressed in epithelial cells (skin keratinocytes) as a model neo-self antigen to investigate the consequences of antigen presentation from epithelial cells. Mice transgenic for hGH driven from the keratin 14 promoter express hGH in skin keratinocytes. This hGH-transgenic skin is not rejected by syngeneic non-transgenic recipients, although an antibody response to hGH develops in grafted animals. Systemic immunization of graft recipients with hGH peptides, or local administration of stimulatory anti-CD40 antibody, induces temporary macroscopic graft inflammation, and an obvious dermal infiltrate of inflammatory cells, but not graft rejection. These results suggest that a neo-self antigen expressed in somatic cells in skin can induce an immune response that can be enhanced further by induction of specific immunity systemically or non-specific immunity locally. However, immune responses do not always lead to rejection, despite induction of local inflammatory changes. Therefore, in vitro immune responses and in vivo delayed type hypersensitivity are not surrogate markers for immune responses effective against epithelial cells expressing neoantigens.
Resumo:
To maximise data output from single-shot astronomical images, the rejection of cosmic rays is important. We present the results of a benchmark trial comparing various cosmic ray rejection algorithms. The procedures assess relative performances and characteristics of the processes in cosmic ray detection, rates of false detections of true objects, and the quality of image cleaning and reconstruction. The cosmic ray rejection algorithms developed by Rhoads (2000, PASP, 112, 703), van Dokkum (2001, PASP, 113, 1420), Pych (2004, PASP, 116, 148), and the IRAF task xzap by Dickinson are tested using both simulated and real data. It is found that detection efficiency is independent of the density of cosmic rays in an image, being more strongly affected by the density of real objects in the field. As expected, spurious detections and alterations to real data in the cleaning process are also significantly increased by high object densities. We find the Rhoads' linear filtering method to produce the best performance in the detection of cosmic ray events; however, the popular van Dokkum algorithm exhibits the highest overall performance in terms of detection and cleaning.
Resumo:
RNA replicons offer a number of qualities which make them attractive as vaccination vectors. Both alphavirus and flavivirus replicon vaccines have been investigated in preclinical models yet there has been little direct comparison of the two vector systems. To determine whether differences in the biology of the two vectors influence immunogenicity, we compared two prototypic replicon vectors based on Semliki Forest virus (SFV) (alphavirus) and Kunjin virus (KUN) (flavivirus). Both vectors when delivered as naked RNAs elicited comparable CD8+ T cell responses but the SFV vectors elicited greater humoral responses to an encoded cytoplasmic antigen beta-galactosidase. Studies in MHC class II-deficient mice revealed that neither vector could overcome the dependence of CD4+ T cell help in the development of humoral and cellular responses following immunization. These studies indicate that the distinct biology of the two replicon systems may differentially impact the adaptive immune response and this may need to be considered when designing vaccination strategies. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The design of a compact planar antenna featuring ultra wideband performance and simultaneous signal rejection in the 4-6 GHz band, assigned for IEEE802.11a and HIPERLAN/2, is presented. The design is demonstrated assuming RT6010LM substrate with a relative dielectric constant of 10.2 and thickness of 0.64 mm. The presented results show that the designed antenna of 27 mm * 20 mm dimensions has a bandwidth from 2.7 GHz to more than 10 GHz excluding the rejection band. The antenna features near omnidirectional characteristics and good radiation efficiency.
Resumo:
As more and more products are distributed through independent channel resellers, suppliers find it increasingly difficult to craft highly motivational incentive packages. Instead, many suppliers' product lines are neglected by resellers in deference to more compatible incentive offers. This paper studies the many aspects of incentive rejection and incentive compatibility and prescribes a four-step, theory-based process to help suppliers craft attractive incentive programs. The process involves identifying resellers' performance needs, recognizing how each need suggests a different basis for incentive rejection, and designing an incentive package such that the incentives support specific reseller needs. Also, unique channel conditions are considered.
Resumo:
Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes--including size, antigen association and addition of TLR agonists--to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFN? responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes.
Resumo:
This paper explores experimentally the impairments in performance that are generated when multiple single-sideband (SSB) subcarrier multiplexing (SCM) signals are closely allocated in frequency to establish a spectrally efficient wavelength division multiplexing (WDM) link. The performance of cost-effective SSB WDM/ SCM implementations, without optical filters in the transmitter, presents a strong dependency on the imperfect sideband suppression ratio that can be directly achieved with the electro-optical modulator. A direct detected broadband multichannel SCM link composed of a state-of-the-art optical IQ modulator and five quadrature phase-shift keyed (QPSK) subcarriers per optical channel is presented, showing that a suppression ratio of 20 dB obtained directly with the modulator produced a penalty of 2 dB in overall performance, due to interference between adjacent optical channels.