999 resultados para Humberto Mauro
Resumo:
The detection of replicative intermediate RNAs as markers of active replication of RNA viruses is an essential tool to investigate pathogenesis in acute viral infections, as well as in their long-term sequelae. In this regard, strand-specific PCR has been used widely to distinguish (-) and (+) enteroviral RNAs in pathogenesis studies of diseases such as dilated cardiomyopathy. It has been generally assumed that oligonucleotide-primed reverse transcription of a given RNA generates only the corresponding specific cDNA, thus assuring the specificity of a PCR product amplified from it. Nevertheless, such assumed strand-specificity is a fallacy, because falsely primed cDNAs can be produced by RNA reverse transcription in the absence of exogenously added primers, (cDNA(primer)(-)), and such falsely primed cDNAs are amplifiable by PCR in the same way as the correctly primed cDNAs. Using as a prototype the coxsackievirus B5 (CVB5), a (+) strand RNA virus, it was shown that cDNA(primer)(-) renders the differential detection of viral (-) and (+) RNAs by conventional PCR virtually impossible, due to gross non-specificity. Using in vitro transcribed CVB5 RNAs (+) and (-), it was shown that cDNA(primer)(-) could be removed effectively by magnetic physical separation of correctly primed biotinylated cDNA. Such strategy enabled truly strand-specific detection of RNA (-) and (+), not only for CVB5, but also for other non-polio enteroviruses. These findings indicate that previous conclusions supporting a role for the persistence of actively replicating enterovirus in the pathogenesis of chronic myocarditis should be regarded with strong skepticism and purification of correctly primed cDNA should be used for strand-specific PCR of viral RNA in order to obtain reliable information on this important subject. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Oropouche virus (OROV), of the family Bunyaviridae, is the second most frequent arbovirus causing febrile disease in Brazil. In spite of this, little is known about pathogenesis of OROV infection. This report describes an experimental model of OROV in golden hamster (Mesocricetus auratus). Following subcutaneous inoculation of OROV, over 50% of the animals developed disease characterized by lethargy, ruffled fur, shivering, paralysis, and approximately one third died. Animals were sacrificed on days 1, 3, 5, 8 and 11 post-inoculation to collect tissue samples from brain, heart, liver, lung, spleen, muscle and blood for virus titration, histology and OROV immunohistochemistry. OROV was detected in high titers in blood, liver and brain, but not in the other organs. Histopathology revealed meningoencephalitis and hepatitis, with abundant OROV antigen detected in liver and brain. Diffuse galectin-3 immunostaining in brain and liver supports microglial and Kupfer cells activation. This is the first description of an experimental model for OROV infection and should be helpful to study pathogenesis and possibly to test antiviral interventions such as drugs and vaccine candidates. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this study in urban Brazil we examine, as a predictor of depressive symptoms, the interaction between a single nucleotide polymorphism in the 2A receptor in the serotonin system (-1438G/A) and cultural consonance in family life, a measure of the degree to which an individual perceives her family as corresponding to a widely shared cultural model of the prototypical family. A community sample of 144 adults was followed over a 2-year-period. Cultural consonance in family life was assessed by linking individuals` perceptions of their own families with a shared cultural model of the family derived from cultural consensus analysis. The -1438G/A polymorphism in the 2A serotonin receptor was genotyped using a standard protocol for DNA extracted from leukocytes. Covariates included age, sex, socioeconomic status, and stressful life events. Cultural consonance in family life was prospectively associated with depressive symptoms. In addition, the interaction between genotype and cultural consonance in family life was significant. For individuals with the A/A variant of the -1438G/A polymorphism of the 2A receptor gene, the effect of cultural consonance in family life on depressive symptoms over a 2-year-period was larger (beta = -0.533, P < 0.01) than those effects for individuals with either the G/A (beta = -0.280, P < 0.10) or G/G (beta = -0.272, P < 0.05) variants. These results are consistent with a process in which genotype moderates the effects of culturally meaningful social experience on depressive symptoms. Am. J. Hum. Biol. 21:91-97, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
In previous research in Brazil, we found socioeconomic and gender differences in body mass and percent body fat, consistent with a model in which individuals in higher socioeconomic strata, especially women, could achieve a cultural ideal of body size and shape. In this article, using new data, we examine these processes more precisely using measures of cultural consonance. Cultural consonance refers to the degree to which individuals approximate, in their own beliefs and behaviors, the shared prototypes for belief and behavior encoded in cultural models. We have found higher cultural consonance in several domains to be associated with health outcomes. Furthermore, there tends to be a general consistency in cultural consonance across domains. Here we suggest that measures of body composition can be considered indicators of individuals` success in achieving cultural ideals of the body, and that cultural consonance in several domains will be associated with body composition. Using waist circumference as an outcome, smaller waist size was associated with higher cultural consonance in lifestyle (beta = -0.311, P < 0.01) and higher cultural consonance in the consumption of high prestige foods (beta = -0.260, P < 0.01) for women (n = 161), but not for men (n = 106), controlling for age, family income, tobacco use, and dietary intake of protein and carbohydrates. Similar results were obtained using the body mass index and weight as outcomes, while there were no associations with height. These results help to illuminate the cultural mediation of body composition.
Resumo:
Patients with sepsis have a marked defect in neutrophil migration. Here we identify a key role of Toll-like receptor 2 (TLR2) in the regulation of neutrophil migration and resistance during polymicrobial sepsis. We found that the expression of the chemokine receptor CXCR2 was dramatically down-regulated in circulating neutrophils from WT mice with severe sepsis, which correlates with reduced chemotaxis to CXCL2 in vitro and impaired migration into an infectious focus in vivo. TLR2 deficiency prevented the down-regulation of CXCR2 and failure of neutrophil migration. Moreover, TLR2(-/-) mice exhibited higher bacterial clearance, lower serum inflammatory cytokines, and improved survival rate during severe sepsis compared with WT mice. In vitro, the TLR2 agonist lipoteichoic acid (LTA) down-regulated CXCR2 expression and markedly inhibited the neutrophil chemotaxis and actin polymerization induced by CXCL2. Moreover, neutrophils activated ex vivo by LTA and adoptively transferred into naive WT recipient mice displayed a significantly reduced competence to migrate toward thioglycolate-induced peritonitis. Finally, LTA enhanced the expression of G protein-coupled receptor kinases 2 (GRK2) in neutrophils; increased expression of GRK2 was seen in blood neutrophils from WT mice, but not TLR2(-/-) mice, with severe sepsis. Our findings identify an unexpected detrimental role of TLR2 in polymicrobial sepsis and suggest that inhibition of TLR2 signaling may improve survival from sepsis.
Resumo:
In the present study, we used the electronic version of the von Frey test to investigate the role of cytokines (TNF-alpha and IL-1 beta) and chemokines (KC/CXCL-1) in the genesis of mechanical hypernociception during antigen-induced inflammation in mice. The nociceptive test consisted of evoking a hindpaw flexion reflex with a hand-held force transducer (electronic anesthesiometer) adapted with a 0.5 mm(2) polypropylene tip. The intraplantar administration of methylated bovine serum albumin (mBSA) in previously immunized (IM), but not in sham-immunized (SI) mice, induced mechanical hypernociception in a dose-dependant manner. Hypernociception induced by antigen was reduced in animals pretreated with IL-lra and reparixin (a non-competitive allosteric inhibitor of CXCR2), and in TNF receptor type 1 deficient (TNFR1-/-) mice. Consistently, antigen challenge induced a time-dependent release of TNF-alpha, IL-1 beta and KC/CXCL-1 in IM, but not in SI, mice. Consistently, antigen challenge induced a time-dependent release of TNF-alpha, IL-1 beta and KC/CXCL-1 in IM, but not in SI, mice. The increase in TNF-alpha levels preceded the increase in IL-1 beta and KC/CXCL1. Antigen-induced release of IL-1 beta and KC/CXCL1 was reduced in TNFR1-/- mice, and TNF-alpha induced hypernociception was inhibited by IL-lra and reparixin. Hypernociception induced by IL-1 beta in immunized mice was inhibited by indomethacin, whereas KC/CXCL1-induced hypernociception was inhibited by indomethacin and guanethidine, Antigen-induced hypernociception was reduced by indomethacin and guanethidine and abolished by the two drugs combined. Together, these results suggest that inflammation associated with an adaptive immune response induces hypernociception that is mediated by an initial release of TNF-alpha, which triggers that subsequent release of IL-1 beta and KC/CXCL1. The latter cytokines in turn stimulate the release of the direct-acting final mediator, prostanoids and sympathetic amines. (C) 2008 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective. To investigate the mechanism underlying neutrophil migration into the articular cavity in experimental arthritis and, by extension, human-inflammatory synovitis. Methods. Antigen-induced arthritis (AIA) was generated in mice with methylated bovine serum albumin (mBSA). Migration assays and histologic analysis were used to evaluate neutrophil recruitment to knee joints. Levels of inflammatory mediators were measured by enzyme-linked immunosorbent assay. Antibodies and pharmacologic inhibitors were used in vivo to determine the role of specific disease mediators. Samples of synovial tissue and synovial fluid from rheumatoid arthritis (RA) or osteoarthritis patients were evaluated for CXCL1 and CXCL5 expression. Results. High levels of CXCL1, CXCL5, and leukotriene B-4 (LTB4) were expressed in the joints of arthritic mice. Confirming their respective functional roles, repertaxin (a CXCR1/CXCR2 receptor antagonist), anti-CXCL1 antibody, anti-CXCL5 antibody, and MK886 (a leukotriene synthesis inhibitor) reduced mBSA-induced neutrophil migration to knee joints. Repertaxin reduced LTB4 production in joint tissue, and neutrophil recruitment induced by CXCL1 or CXCL5 was inhibited by MK886, suggesting a sequential mechanism. Levels of both CXCL1 and CXCL5 were elevated in synovial fluid and were released in vitro by RA synovial tissues. Moreover, RA synovial fluid neutrophils stimulated with CXCL1 or CXCL5 released significant amounts of LTB4. Conclusion. Our data implicate CXCL1, CXCL5, and LTB4, acting sequentially, in neutrophil migration in AIA. Elevated levels of CXCL1 and CXCL5 in the synovial compartment of RA patients provide robust comparative data indicating that this mechanism plays a role in inflammatory joint disease. Together, these results suggest that inhibition of. CXCL1, CXCL5, or LTB4 may represent a potential therapeutic strategy in RA.
Resumo:
Neutrophil migration is responsible for tissue damage observed in inflammatory diseases. Neutrophils are also implicated in inflammatory nociception, but mechanisms of their participation have not been elucidated. In the present study, we addressed these mechanisms in the carrageenan-induced mechanical hypernociception, which was determined using a modification of the Randall-Sellito test in rats. Neutrophil accumulation into the plantar tissue was determined by the contents of myeloperoxidase activity, whereas cytokines and PGE(2) levels were measured by ELISA and radioimmunoassay, respectively. The pretreatment of rats with fucoidin (a leukocyte adhesion inhibitor) inhibited carrageenan-induced hypernociception in a dose- and time-dependent manner. Inhibition of hypernociception by fucoidin was associated with prevention of neutrophil recruitment, as it did not inhibit the hypernociception induced by the direct-acting hypernociceptive mediators, PGE(2) and dopamine, which cause hypernociception, independent of neutrophils. Fucoidin had no effect on carrageenan-induced TNF-alpha, IL-1 beta, and cytokine-induced neutrophil chemoattractant 1 (CINC-1)/CXCL1 production, suggesting that neutrophils were not the source of hypernociceptive cytokines. Conversely, hypernociception and neutrophil migration induced by TNF-alpha, IL-1 beta, and CINC-1/CXCL1 was inhibited by fucoidin, suggesting that neutrophils are involved in the production of direct-acting hypernociceptive mediators. Indeed, neutrophils stimulated in vitro with IL-1 beta produced PGE(2), and IL-1 beta-induced PGE(2) production in the rat paw was inhibited by the pretreatment with fucoidin. In conclusion, during the inflammatory process, the migrating neutrophils participate in the cascade of events leading to mechanical hypernociception, at least by mediating the release of direct-acting hypernociceptive mediators, such as PGE(2). Therefore, the blockade of neutrophil migration could be a target to development of new analgesic drugs.
Resumo:
Rationale Sepsis is a leading cause of death in the intensive care unit, characterized by a systemic inflammatory response (SIRS) and bacterial infection, which can often induce multiorgan damage and failure. Leukocyte recruitment, required to limit bacterial spread, depends on phosphoinositide-3 kinase gamma (PI3K gamma) signaling in vitro; however, the role of this enzyme in polymicrobial sepsis has remained unclear. Objectives: This study aimed to determine the specific role of the kinase activity of PI3K gamma in the pathogenesis of sepsis and multiorgan damage. Methods. PI3K gamma wild-type, knockout, and kinase-dead mice were exposed to cecal ligation and perforation induced sepsis and assessed for survival; pulmonary, hepatic, and cardiovascular damage; coagulation derangements; systemic inflammation; bacterial spread; and neutrophil recruitment. Additionally, wild-type mice were treated either before or after the onset of sepsis with a PI3K gamma inhibitor and assessed for survival, neutrophil recruitment, and bacterial spread. Measurements and Main Results: Both genetic and pharmaceutical PI3K gamma kinase inhibition significantly improved survival, reduced multiorgan damage, and limited bacterial decompartmentalization, while modestly affecting SIRS. Protection resulted from both neutrophil-independent mechanisms, involving improved cardiovascular function, and neutrophil-dependent mechanisms, through reduced susceptibility to neutrophil migration failure during severe sepsis by maintaining neutrophil surface expression of the chemokine receptor, CXCR2. Furthermore, PI3K gamma pharmacological inhibition significantly decreased mortality and improved neutrophil migration and bacterial control, even when administered during established septic shock. Conclusions: This study establishes PI3K gamma as a key molecule in the pathogenesis of septic infection and the transition from SIRS to organ damage and identifies it as a novel possible therapeutic target.
Resumo:
Objectives Interleukin 33 (IL-33) is a new member of the IL-1 family of cytokines which signals via its receptor, ST2 (IL-33R), and has an important role in Th2 and mast cell responses. This study shows that IL-33 orchestrates neutrophil migration in arthritis. Methods and results Methylated bovine serum albumin (mBSA) challenge in the knee joint of mBSA-immunised mice induced local neutrophil migration accompanied by increased IL-33R and IL-33 mRNA expression. Cell migration was inhibited by systemic and local treatments with soluble (s) IL-33R, an IL-33 decoy receptor, and was not evident in IL-33R-deficient mice. IL-33 injection also induced IL-33R-dependent neutrophil migration. Antigen- and IL-33-induced neutrophil migration in the joint was dependent on CXCL1, CCL3, tumour necrosis factor a (TNF alpha) and IL-1 beta synthesis. Synovial tissue, macrophages and activated neutrophils expressed IL-33R. IL-33 induces neutrophil migration by activating macrophages to produce chemokines and cytokines and by directly acting on neutrophils. Importantly, neutrophils from patients with rheumatoid arthritis successfully treated with anti-TNF alpha antibody (infliximab) expressed significantly lower levels of IL-33R than patients treated with methotrexate alone. Only neutrophils from patients treated with methotrexate alone or from normal donors stimulated with TNF alpha responded to IL-33 in chemotaxis. Conclusions These results suggest that suppression of IL-33R expression in neutrophils, preventing IL-33-induced neutrophil migration, may be an important mechanism of anti-TNF alpha therapy of inflammation.
Resumo:
This study provides evidence supporting the idea that although inflammatory cells migration to the cardiac tissue is necessary to control the growth of Trypanosoma cruzi, the excessive influx of such cells during acute myocarditis may be deleterious to the host. Production of lipid mediators of inflammation like leukotrienes (LTs) along with cytokines and chemokines largely influences the severity of inflammatory injury in response to tissue parasitism. T cruzi infection in mice deficient in 5-lipoxygenase (5-LO), the enzyme responsible for the synthesis of LTs and other lipid inflammatory mediators, resulted in transiently increased parasitemia, and improved survival rate compared with WT mice. Myocardia from 5-LO(-/-) mice exhibited reduced inflammation, collagen deposition, and migration of CD4(+), CD8(+), and IFN-gamma-producer cells compared with WT littermates. Moreover, decreased amounts of TNF-alpha, IFN-gamma, and nitric oxide synthase were found in the hearts of 5-LO(-/-) mice. Interestingly, despite of early higher parasitic load, 5-LO(-/-) mice survived, and controlled T cruzi infection. These results show that efficient parasite clearance is possible in a context of moderate inflammatory response, as occurred in 5-LO(-/-) mice, in which reduced myocarditis protects the animals during T cruzi infection. (c) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Severe dengue infection in humans causes a disease characterized by thrombocytopenia, increased levels of cytokines, increased vascular permeability, hemorrhage, and shock. Treatment is supportive. Activation of platelet-activating factor (PAF) receptor (PAFR) on endothelial cells and leukocytes induces increase in vascular permeability, hypotension, and production of cytokines. We hypothesized that activation of PAFR could account for the major systemic manifestations of dengue infection. Inoculation of adult mice with an adapted strain of Dengue virus caused a systemic disease, with several features of the infection in humans. In PAFR(-/-) mice, there was decreased thrombocytopenia, hemoconcentration, decreased systemic levels of cytokines, and delay of lethality, when compared with WT infected mice. Treatment with UK-74,505, an orally active PAFR antagonist, prevented the above-mentioned manifestations, as well as hypotension and increased vascular permeability, and decreased lethality, even when started 5 days after virus inoculation. Similar results were obtained with a distinct PAFR antagonist, PCA-4246. Despite decreased disease manifestation, viral loads were similar (PAFR(-/-)) or lower (PAFR antagonist) than in WT mice. Thus, activation of PAFR plays a major role in the pathogenesis of experimental dengue infection, and its blockade prevents more severe disease manifestation after infection with no increase in systemic viral titers, suggesting that there is no interference in the ability of the murine host to deal with the infection. PAFR antagonists are disease-modifying agents in experimental dengue infection.
Resumo:
This study evaluated the role of arterial baroreceptors in arterial pressure (AP) and pulse interval (PI) regulation in conscious C57BL mice. Male animals, implanted with catheters in a femoral artery and a jugular vein, were submitted to sino-aortic (SAD), aortic (Ao-X) or carotid sinus denervation (Ca-X), 5 daysprior to the experiments. After basal recording of AP, the lack of reflex bradycardia elicited by administration of phenylephrine was used to confirm the efficacy of SAD, and cardiac autonomic blockade with methylatropine and propranolol was performed. The AP and PI variability were calculated in the time and frequency domains (spectral analysis/fast Fourier transform) with the spectra quantified in low-(LF; 0.25-1Hz) and high-frequency bands (HF; 1-5Hz). Basal AP and AP variability were higher after SAD, Ao-X or Ca-X than in intact mice. Pulse interval was similar among the groups, whereas PI variability was lower after SAD. Atropine elicited a slight tachycardia in control mice but did not change PI after total or partial denervation. The bradycardia caused by propranolol was higher after SAD, Ao-X or Ca-X compared with intact mice. The increase in the variability of AP was accompanied by a marked increase in the LF and HF power of the AP spectra after baroreceptor denervation. The LF and HF power of the PI were reduced by SAD and by Ao-X or Ca-X. Therefore, both sino-aortic and partial baroreceptor denervation in mice elicits hypertension and a remarkable increase in AP variability and cardiac sympathetic tonus. Spectral analysis showed an important contribution of the baroreflex in the power of LF oscillations of the PI spectra. Both sets of baroreceptors seem to be equally important in the autonomic regulation of the cardiovascular system in mice.
Resumo:
MRI is an important tool for investigating breast cancer. Although recognized as the method of choice for screening highrisk patients, and for other indications the role of MRI for lesion characterization remains controversial. Recently some authors have advocated the use of morphologic and postcontrast features for this purpose. Quantitative breast MRI techniques have not been applied extensively in breast diseases. Magnetization transfer (MT) is a quantitative MR technique commonly used to investigate neurological diseases. In breast diseases the use of MT has been limited to improving visualization of areas of enhancement in postcontrast images. The purpose of this study was to evaluate the feasibility and utility of MT in discriminating benign from malignant breast lesions. Fifty-two lesions, Bl-RADS 4 and 5, from 49 patients, were prospectively evaluated using the MT ratio (MTR). Patients were divided into two groups: benign and malignant lesions. The MTR of fat, pectoralis major muscle, fibroglandular tissue, and breast lesions were calculated. A statistically significant difference was found between MTR from benign and malignant lesions (P < 0.001). Preliminary results suggest that MT can be used to evaluate breast lesions. Further studies are necessary to better define the utility and applicability of this technique.
Resumo:
Background: Obesity is epidemic worldwide, and increases in cesarean delivery rates have occurred in parallel. Objective: This study aimed to determine whether cesarean delivery is a risk factor for obesity in adulthood in a birth cohort of Brazilian subjects. Design: We initiated a birth cohort study in Ribeirao Preto, southeastern Brazil, in 1978. A randomly selected sample of 2057 subjects from the original cohort was reassessed in 2002-2004. Type of delivery, birth weight, maternal smoking, and schooling were obtained after birth. The following data from subjects were collected at 23-25 y of age: body mass index (BMI; in kg/m(2)), physical activity, smoking, and income. Obesity was defined as a BMI >= 30. A Poisson multivariable model was performed to determine the association between cesarean delivery and BMI. Results: The obesity rate in adults born by cesarean delivery was 15.2% and in those born by vaginal delivery was 10.4% (P = 0.002). Adults born by cesarean delivery had an increased risk (prevalence ratio: 1.58; 95% CI: 1.23, 2.02) of obesity at adulthood after adjustments. Conclusion: We hypothesize that increasing rates of cesarean delivery may play a role in the obesity epidemic worldwide. Am J Clin Nutr 2011;93:1344-7.