939 resultados para Human Computer Interaction (HCI)
Resumo:
This paper presents results to indicate the potential applications of a direct connection between the human nervous system and a computer network. Actual experimental results obtained from a human subject study are given, with emphasis placed on the direct interaction between the human nervous system and possible extra-sensory input. An brief overview of the general state of neural implants is given, as well as a range of application areas considered. An overall view is also taken as to what may be possible with implant technology as a general purpose human-computer interface for the future.
Resumo:
Human-like computer interaction systems requires far more than just simple speech input/output. Such a system should communicate with the user verbally, using a conversational style language. It should be aware of its surroundings and use this context for any decisions it makes. As a synthetic character, it should have a computer generated human-like appearance. This, in turn, should be used to convey emotions, expressions and gestures. Finally, and perhaps most important of all, the system should interact with the user in real time, in a fluent and believable manner.
Resumo:
Trabalho de Projecto de Mestrado em Ciências de Comunicação Variante Novos Media e Práticas Web
Resumo:
Eye tracking as an interface to operate a computer is under research for a while and new systems are still being developed nowadays that provide some encouragement to those bound to illnesses that incapacitates them to use any other form of interaction with a computer. Although using computer vision processing and a camera, these systems are usually based on head mount technology being considered a contact type system. This paper describes the implementation of a human-computer interface based on a fully non-contact eye tracking vision system in order to allow people with tetraplegia to interface with a computer. As an assistive technology, a graphical user interface with special features was developed including a virtual keyboard to allow user communication, fast access to pre-stored phrases and multimedia and even internet browsing. This system was developed with the focus on low cost, user friendly functionality and user independency and autonomy.
Resumo:
This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.
Resumo:
One of the main challenges for developers of new human-computer interfaces is to provide a more natural way of interacting with computer systems, avoiding excessive use of hand and finger movements. In this way, also a valuable alternative communication pathway is provided to people suffering from motor disabilities. This paper describes the construction of a low cost eye tracker using a fixed head setup. Therefore a webcam, laptop and an infrared lighting source were used together with a simple frame to fix the head of the user. Furthermore, detailed information on the various image processing techniques used for filtering the centre of the pupil and different methods to calculate the point of gaze are discussed. An overall accuracy of 1.5 degrees was obtained while keeping the hardware cost of the device below 100 euros.
Resumo:
The monitoring of cognitive functions aims at gaining information about the current cognitive state of the user by decoding brain signals. In recent years, this approach allowed to acquire valuable information about the cognitive aspects regarding the interaction of humans with external world. From this consideration, researchers started to consider passive application of brain–computer interface (BCI) in order to provide a novel input modality for technical systems solely based on brain activity. The objective of this thesis is to demonstrate how the passive Brain Computer Interfaces (BCIs) applications can be used to assess the mental states of the users, in order to improve the human machine interaction. Two main studies has been proposed. The first one allows to investigate whatever the Event Related Potentials (ERPs) morphological variations can be used to predict the users’ mental states (e.g. attentional resources, mental workload) during different reactive BCI tasks (e.g. P300-based BCIs), and if these information can predict the subjects’ performance in performing the tasks. In the second study, a passive BCI system able to online estimate the mental workload of the user by relying on the combination of the EEG and the ECG biosignals has been proposed. The latter study has been performed by simulating an operative scenario, in which the occurrence of errors or lack of performance could have significant consequences. The results showed that the proposed system is able to estimate online the mental workload of the subjects discriminating three different difficulty level of the tasks ensuring a high reliability.
Resumo:
New low cost sensors and the new open free libraries for 3D image processing are permitting to achieve important advances for robot vision applications such as tridimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a method to recognize the human hand and to track the fingers is proposed. This new method is based on point clouds from range images, RGBD. It does not require visual marks, camera calibration, environment knowledge and complex expensive acquisition systems. Furthermore, this method has been implemented to create a human interface in order to move a robot hand. The human hand is recognized and the movement of the fingers is analyzed. Afterwards, it is imitated from a Barret hand, using communication events programmed from ROS.
Resumo:
Audio feedback remains little used in most graphical user interfaces despite its potential to greatly enhance interaction. Not only does sonic enhancement of interfaces permit more natural human-computer communication but it also allows users to employ an appropriate sense to solve a problem rather than having to rely solely on vision. Research shows that designers do not typically know how to use sound effectively; subsequently, their ad hoc use of sound often leads to audio feedback being considered an annoying distraction. Unlike the design of purely graphical user interfaces for which guidelines are common, the audio-enhancement of graphical user interfaces has (until now) been plagued by a lack of suitable guidance. This paper presents a series of empirically substantiated guidelines for the design and use of audio-enhanced graphical user interface widgets.
Resumo:
Human and robots have complementary strengths in performing assembly operations. Humans are very good at perception tasks in unstructured environments. They are able to recognize and locate a part from a box of miscellaneous parts. They are also very good at complex manipulation in tight spaces. The sensory characteristics of the humans, motor abilities, knowledge and skills give the humans the ability to react to unexpected situations and resolve problems quickly. In contrast, robots are very good at pick and place operations and highly repeatable in placement tasks. Robots can perform tasks at high speeds and still maintain precision in their operations. Robots can also operate for long periods of times. Robots are also very good at applying high forces and torques. Typically, robots are used in mass production. Small batch and custom production operations predominantly use manual labor. The high labor cost is making it difficult for small and medium manufacturers to remain cost competitive in high wage markets. These manufactures are mainly involved in small batch and custom production. They need to find a way to reduce the labor cost in assembly operations. Purely robotic cells will not be able to provide them the necessary flexibility. Creating hybrid cells where humans and robots can collaborate in close physical proximities is a potential solution. The underlying idea behind such cells is to decompose assembly operations into tasks such that humans and robots can collaborate by performing sub-tasks that are suitable for them. Realizing hybrid cells that enable effective human and robot collaboration is challenging. This dissertation addresses the following three computational issues involved in developing and utilizing hybrid assembly cells: - We should be able to automatically generate plans to operate hybrid assembly cells to ensure efficient cell operation. This requires generating feasible assembly sequences and instructions for robots and human operators, respectively. Automated planning poses the following two challenges. First, generating operation plans for complex assemblies is challenging. The complexity can come due to the combinatorial explosion caused by the size of the assembly or the complex paths needed to perform the assembly. Second, generating feasible plans requires accounting for robot and human motion constraints. The first objective of the dissertation is to develop the underlying computational foundations for automatically generating plans for the operation of hybrid cells. It addresses both assembly complexity and motion constraints issues. - The collaboration between humans and robots in the assembly cell will only be practical if human safety can be ensured during the assembly tasks that require collaboration between humans and robots. The second objective of the dissertation is to evaluate different options for real-time monitoring of the state of human operator with respect to the robot and develop strategies for taking appropriate measures to ensure human safety when the planned move by the robot may compromise the safety of the human operator. In order to be competitive in the market, the developed solution will have to include considerations about cost without significantly compromising quality. - In the envisioned hybrid cell, we will be relying on human operators to bring the part into the cell. If the human operator makes an error in selecting the part or fails to place it correctly, the robot will be unable to correctly perform the task assigned to it. If the error goes undetected, it can lead to a defective product and inefficiencies in the cell operation. The reason for human error can be either confusion due to poor quality instructions or human operator not paying adequate attention to the instructions. In order to ensure smooth and error-free operation of the cell, we will need to monitor the state of the assembly operations in the cell. The third objective of the dissertation is to identify and track parts in the cell and automatically generate instructions for taking corrective actions if a human operator deviates from the selected plan. Potential corrective actions may involve re-planning if it is possible to continue assembly from the current state. Corrective actions may also involve issuing warning and generating instructions to undo the current task.
Resumo:
With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.
Resumo:
This work evaluated the Modulation of reactive oxygen species (ROS) produced by the cisplatin-human DNA interaction in a cell-free experimental model by the carotenoids bixin and lycopene extracted from, natural dietary Sources and purified through luminol- and Cypridina luciferin methoxy-analogue (MCLA)- enhanced chemiluminescence assays. The results showed that the ROS generation by DNA-cisplatin interaction was inhibited by both lycopene and bixin in a concentration-dependent manner. At a concentration of 100 mu M, lycopene and bixin inhibited Superoxide anion (O center dot(2)) generation at 90% and 82%, respectively, and the total ROS generation at 44% and 42%, respectively. The formation of significant amounts of isomers or degradation products of both carotenoids was not observed after ROS scavenging, as evaluated by high-performance liquid chromatography. Taken together, these results Suggest that carotenoids can be helpful to Modulate the oxidative stress found in cancer therapy with cisplatin. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
As the use of technological devices in everyday environments becomes more prevalent, it is clear that access to these devices has become an important aspect of occupational performance. Children are increasingly required to competently manipulate technology such as the computer to fulfil occupational roles of student and player. Occupational therapists are in a position to facilitate the successful interface between children and standard computer technologies. The literature has supported the use of direct manipulation interfaces in computing that requires mastery of devices such as the mouse. Identification of children likely to experience difficulties with mouse use will inform the development of appropriate methods of intervention promoting mouse skill and further enhance participation in occupational tasks. The aim of this paper is to discuss the development of an assessment of mouse proficiency for children. It describes the construction of the assessment, the content of the test, and its content validity.
Resumo:
The Test of Mouse Proficiency (TOMP) was developed to assist occupational therapists and education professionals assess computer mouse competency skills in children from preschool to upper primary (elementary) school age. The preliminary reliability and validity of TOMP are reported in this paper. Methods used to examine the internal consistency, test-retest reliability, and criterion- and construct-related validity of the test are elaborated. In the continuing process of test refinement, these preliminary studies support to varying degrees the reliability and validity of TOMP. Recommendations for further validation of the assessment are discussed along with indications for potential clinical application.