914 resultados para Horospherical geometry
Resumo:
This paper examines optimal solutions of control systems with drift defined on the orthonormal frame bundle of particular Riemannian manifolds of constant curvature. The manifolds considered here are the space forms Euclidean space E-3, the spheres S-3 and the hyperboloids H-3 with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1,3). The optimal controls of these systems are solved explicitly in terms of elliptic functions. In this paper, a geometric interpretation of the extremal solutions is given with particular emphasis to a singularity in the explicit solutions. Using a reduced form of the Casimir functions the geometry of these solutions are illustrated.
Resumo:
A combination of photoelectron spectroscopy, temperature programmed desorption and low energy electron diffraction structure determinations have been applied to study the p(2 x 2) structures of pure hydrogen and co-adsorbed hydrogen and CO on Ni {111}. In agreement with earlier work atomic hydrogen is found to adsorb on fcc and hcp sites in the pure layer with H-Ni bond lengths of 1.74Angstrom. The substrate interlayer distances, d(12) = 2.05Angstrom and d(23) = 2.06Angstrom, are expanded with respect to clean Ni {111} with buckling of 0.04Angstrom in the first layer. In the co-adsorbed phase Co occupies hcp sites and only the hydrogen atoms on fcc sites remain on the surface. d(12) is even further expanded to 2.08Angstrom with buckling in the first and second layer of 0.06 and 0.02Angstrom, respectively. The C-O, C-Ni, and H-Ni bond lengths are within the range of values also found for the pure adsorbates.
Resumo:
The mutual influence of surface geometry (e.g. lattice parameters, morphology) and electronic structure is discussed for Cu-Ni bimetallic (111) surfaces. It is found that on flat surfaces the electronic d-states of the adlayer experience very little influence from the substrate electronic structure which is due to their large separation in binding energies and the close match of Cu and Ni lattice constants. Using carbon monoxide and benzene as probe molecules, it is found that in most cases the reactivity of Cu or Ni adlayers is very similar to the corresponding (111) single crystal surfaces. Exceptions are the adsorption of CO on submonolayers of Cu on Ni(111) and the dissociation of benzene on Ni/Cu(111) which is very different from Ni(111). These differences are related to geometric factors influencing the adsorption on these surfaces.
Resumo:
This topical review discusses the influence of the surface geometry (e.g. lattice parameters and termination) and electronic structure of well-defined bimetallic surfaces on the adsorption and dissociation of benzene. The available data can be divided into two categories with combinations of non-transition metals and transition metals on the one side and combinations of two transition metals on the other. The main effect of non-transition metals in surface alloys is site blocking which can suppress chemisorption and dissociation of the molecules completely. When two transition metals are combined, the effects are less dramatic. They mainly affect the strength of the chemisorption bond and the degree of dissociation due to electronic and template effects.
Resumo:
Low energy electron diffraction (LEED) structure determinations have been performed for the p(2 x 2) structures of pure oxygen and oxygen co-adsorbed with CO on Ni{111}. Optimisation of the non-geometric parameters led to very good agreement between experimental and theoretical IV-curves and hence to a high accuracy in the structural parameters. In agreement with earlier work atomic oxygen is found to adsorb on fee sites in both structures. In the co-adsorbed phase CO occupies atop sites. The positions of the substrate atoms are almost identical, within 0.02 Angstrom, in both structures, implying that the interaction with oxygen dominates the arrangement of Ni atoms at the surface.
Resumo:
Chemisorbed layers of lysine adsorbed on Cu{110} have been studied using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. XPS indicates that the majority (70%) of the molecules in the saturated layer at room temperature (coverage 0.27 ML) are in their zwitterionic state with no preferential molecular orientation. After annealing to 420 K a less densely packed layer is formed (0.14 ML), which shows a strong angular dependence in the characteristic π-resonance of oxygen K edge NEXAFS and no indication of zwitterions in XPS. These experimental results are best compatible with molecules bound to the substrate through the oxygen atoms of the (deprotonated) carboxylate group and the two amino groups involving Cu atoms in three different close packed rows. This μ4 bonding arrangement with an additional bond through the !-amino group is different from geometries previously suggested for lysine on Cu{110}.
Resumo:
Stereoscopic white-light imaging of a large portion of the inner heliosphere has been used to track interplanetary coronal mass ejections. At large elongations from the Sun, the white-light brightness depends on both the local electron density and the efficiency of the Thomson-scattering process. To quantify the effects of the Thomson-scattering geometry, we study an interplanetary shock using forward magnetohydrodynamic simulation and synthetic white-light imaging. Identifiable as an inclined streak of enhanced brightness in a time–elongation map, the travelling shock can be readily imaged by an observer located within a wide range of longitudes in the ecliptic. Different parts of the shock front contribute to the imaged brightness pattern viewed by observers at different longitudes. Moreover, even for an observer located at a fixed longitude, a different part of the shock front will contribute to the imaged brightness at any given time. The observed brightness within each imaging pixel results from a weighted integral along its corresponding ray-path. It is possible to infer the longitudinal location of the shock from the brightness pattern in an optical sky map, based on the east–west asymmetry in its brightness and degree of polarisation. Therefore, measurement of the interplanetary polarised brightness could significantly reduce the ambiguity in performing three-dimensional reconstruction of local electron density from white-light imaging.
Resumo:
The impact of ceiling geometries on the performance of lightshelves was investigated using physical model experiments and radiance simulations. Illuminance level and distribution uniformity were assessed for a working plane in a large space located in sub-tropical climate regions where innovative systems for daylighting and shading are required. It was found that the performance of the lightshelf can be improved by changing the ceiling geometry; the illuminance level increased in the rear of the room and decreased in the front near the window compared to rooms having conventional horizontal ceilings. Moreover, greater uniformity was achieved throughout the room as a result of reducing the difference in the illuminance level between the front and rear of the room. Radiance simulation results were found to be in good agreement with physical model data obtained under a clear sky and high solar radiation. The best ceiling shape was found to be one that is curved in the front and rear of the room.
Resumo:
Adsorption of l-alanine on the Cu{111} single crystal surface was investigated as a model system for interactions between small chiral modifier molecules and close-packed metal surfaces. Synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy are used to determine the chemical state, bond coordination and out-of-plane orientation of the molecule on the surface. Alanine adsorbs in its anionic form at room temperature, whilst at low temperature the overlayer consists of anionic and zwitterionic molecules. NEXAFS spectra exhibit a strong angular dependence of the π ⁎ resonance associated with the carboxylate group, which allows determining the tilt angle of this group with respect to the surface plane (48° ± 2°) at room temperature. Low-energy electron diffraction (LEED) shows a p(2√13x2√13)R13° superstructure with only one domain, which breaks the mirror symmetry of the substrate and, thus, induces global chirality to the surface. Temperature-programmed XPS (TP-XPS) and temperature-programmed desorption (TPD) experiments indicate that the zwitterionic form converts into the anionic species (alaninate) at 293 K. The latter desorbs/decomposes between 435 K and 445 K.