883 resultados para Hidden Markov Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

O uso da comunicação de voz e dados através de dispositivos móveis vem aumentando significativamente nos últimos anos. Tal expansão traz algumas dificuldades inerentes, tais como: ampliação constante de capacidade das redes e eficiência energética. Neste contexto, vem se consolidando o conceito de Green networks, que se concentra no esforço para economia de energia e redução de CO2. Neste sentido, este trabalho propõe validar um modelo de uma política baseado em processo markoviano de decisão, visando a otimizar o consumo de energia, QoS e QoE, na alocação de usuários em redes macrocell e femtocell. Para isso o modelo foi inserido no simulador NS-2, aliando a solução analítica markoviana à flexibilidade característica da simulação discreta. A partir dos resultados apresentados na simulação, a política obteve uma economia significativa no consumo energético, melhorando a eficiência energética em até 4%, além de melhorar a qualidade de serviço em relação às redes macrocell e femtocell, demonstrando-se eficaz, de modo a alterar diretamente as métricas de QoS e de QoE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase diagram of an asymmetric N = 3 Ashkin-Teller model is obtained by a numerical analysis which combines Monte Carlo renormalization group and reweighting techniques. Present results reveal several differences with those obtained by mean-field calculations and a Hamiltonian approach. In particular, we found Ising critical exponents along a line where Goldschmidt has located the Kosterlitz-Thouless multicritical point. On the other hand, we did find nonuniversal exponents along another transition line. Symmetry breaking in this case is very similar to the N = 2 case, since the symmetries associated to only two of the Ising variables are broken. However, for large values of the coupling constant ratio XW = W/K, when the only broken symmetry is of a hidden variable, we detected first-order phase transitions giving evidence supporting the existence of a multicritical point, as suggested by Goldschmidt, but in a different region of the phase diagram. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a bivariate distribution for the bivariate survival times based on Farlie-Gumbel-Morgenstern copula to model the dependence on a bivariate survival data. The proposed model allows for the presence of censored data and covariates. For inferential purpose a Bayesian approach via Markov Chain Monte Carlo (MCMC) is considered. Further, some discussions on the model selection criteria are given. In order to examine outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. The newly developed procedures are illustrated via a simulation study and a real dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infectious diseases can bring about population declines and local host extinctions, contributing significantly to the global biodiversity crisis. Nonetheless, studies measuring population-level effects of pathogens in wild host populations are rare, and taxonomically biased toward avian hosts and macroparasitic infections. We investigated the effects of bovine tuberculosis (bTB), caused by the bacterial pathogen Mycobacterium bovis, on African buffalo (Syncerus caffer) at Hluhluwe-iMfolozi Park, South Africa. We tested 1180 buffalo for bTB infection between May 2000 and November 2001. Most infections were mild, confirming the chronic nature of the disease in buffalo. However, our data indicate that bTB affects both adult survival and fecundity. Using an age-structured population model, we demonstrate that the pathogen can reduce population growth rate drastically; yet its effects appear difficult to detect at the population level: bTB causes no conspicuous mass mortalities or fast population declines, nor does it alter host-population age structure significantly. Our models suggest that this syndrome—low detectability coupled with severe impacts on population growth rate and, therefore, resilience—may be characteristic of chronic diseases in large mammals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a hybrid hazard regression model with threshold stress which includes the proportional hazards and the accelerated failure time models as particular cases. To express the behavior of lifetimes the generalized-gamma distribution is assumed and an inverse power law model with a threshold stress is considered. For parameter estimation we develop a sampling-based posterior inference procedure based on Markov Chain Monte Carlo techniques. We assume proper but vague priors for the parameters of interest. A simulation study investigates the frequentist properties of the proposed estimators obtained under the assumption of vague priors. Further, some discussions on model selection criteria are given. The methodology is illustrated on simulated and real lifetime data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to develop a Bayesian analysis for the right-censored survival data when immune or cured individuals may be present in the population from which the data is taken. In our approach the number of competing causes of the event of interest follows the Conway-Maxwell-Poisson distribution which generalizes the Poisson distribution. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the proposed model. Also, some discussions on the model selection and an illustration with a real data set are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper has two goals. First to present a natural example of a new class of random fields which are the variable neighborhood random fields. The example we consider is a partially observed nearest neighbor binary Markov random field. The second goal is to establish sufficient conditions ensuring that the variable neighborhoods are almost surely finite. We discuss the relationship between the almost sure finiteness of the interaction neighborhoods and the presence/absence of phase transition of the underlying Markov random field. In the case where the underlying random field has no phase transition we show that the finiteness of neighborhoods depends on a specific relation between the noise level and the minimum values of the one-point specification of the Markov random field. The case in which there is phase transition is addressed in the frame of the ferromagnetic Ising model. We prove that the existence of infinite interaction neighborhoods depends on the phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A data set of a commercial Nellore beef cattle selection program was used to compare breeding models that assumed or not markers effects to estimate the breeding values, when a reduced number of animals have phenotypic, genotypic and pedigree information available. This herd complete data set was composed of 83,404 animals measured for weaning weight (WW), post-weaning gain (PWG), scrotal circumference (SC) and muscle score (MS), corresponding to 116,652 animals in the relationship matrix. Single trait analyses were performed by MTDFREML software to estimate fixed and random effects solutions using this complete data. The additive effects estimated were assumed as the reference breeding values for those animals. The individual observed phenotype of each trait was adjusted for fixed and random effects solutions, except for direct additive effects. The adjusted phenotype composed of the additive and residual parts of observed phenotype was used as dependent variable for models' comparison. Among all measured animals of this herd, only 3160 animals were genotyped for 106 SNP markers. Three models were compared in terms of changes on animals' rank, global fit and predictive ability. Model 1 included only polygenic effects, model 2 included only markers effects and model 3 included both polygenic and markers effects. Bayesian inference via Markov chain Monte Carlo methods performed by TM software was used to analyze the data for model comparison. Two different priors were adopted for markers effects in models 2 and 3, the first prior assumed was a uniform distribution (U) and, as a second prior, was assumed that markers effects were distributed as normal (N). Higher rank correlation coefficients were observed for models 3_U and 3_N, indicating a greater similarity of these models animals' rank and the rank based on the reference breeding values. Model 3_N presented a better global fit, as demonstrated by its low DIC. The best models in terms of predictive ability were models 1 and 3_N. Differences due prior assumed to markers effects in models 2 and 3 could be attributed to the better ability of normal prior in handle with collinear effects. The models 2_U and 2_N presented the worst performance, indicating that this small set of markers should not be used to genetically evaluate animals with no data, since its predictive ability is restricted. In conclusion, model 3_N presented a slight superiority when a reduce number of animals have phenotypic, genotypic and pedigree information. It could be attributed to the variation retained by markers and polygenic effects assumed together and the normal prior assumed to markers effects, that deals better with the collinearity between markers. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is an interest in studying latent variables (or latent traits). Usually such latent traits are assumed to be random variables and a convenient distribution is assigned to them. A very common choice for such a distribution has been the standard normal. Recently, Azevedo et al. [Bayesian inference for a skew-normal IRT model under the centred parameterization, Comput. Stat. Data Anal. 55 (2011), pp. 353-365] proposed a skew-normal distribution under the centred parameterization (SNCP) as had been studied in [R. B. Arellano-Valle and A. Azzalini, The centred parametrization for the multivariate skew-normal distribution, J. Multivariate Anal. 99(7) (2008), pp. 1362-1382], to model the latent trait distribution. This approach allows one to represent any asymmetric behaviour concerning the latent trait distribution. Also, they developed a Metropolis-Hastings within the Gibbs sampling (MHWGS) algorithm based on the density of the SNCP. They showed that the algorithm recovers all parameters properly. Their results indicated that, in the presence of asymmetry, the proposed model and the estimation algorithm perform better than the usual model and estimation methods. Our main goal in this paper is to propose another type of MHWGS algorithm based on a stochastic representation (hierarchical structure) of the SNCP studied in [N. Henze, A probabilistic representation of the skew-normal distribution, Scand. J. Statist. 13 (1986), pp. 271-275]. Our algorithm has only one Metropolis-Hastings step, in opposition to the algorithm developed by Azevedo et al., which has two such steps. This not only makes the implementation easier but also reduces the number of proposal densities to be used, which can be a problem in the implementation of MHWGS algorithms, as can be seen in [R.J. Patz and B.W. Junker, A straightforward approach to Markov Chain Monte Carlo methods for item response models, J. Educ. Behav. Stat. 24(2) (1999), pp. 146-178; R. J. Patz and B. W. Junker, The applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses, J. Educ. Behav. Stat. 24(4) (1999), pp. 342-366; A. Gelman, G.O. Roberts, and W.R. Gilks, Efficient Metropolis jumping rules, Bayesian Stat. 5 (1996), pp. 599-607]. Moreover, we consider a modified beta prior (which generalizes the one considered in [3]) and a Jeffreys prior for the asymmetry parameter. Furthermore, we study the sensitivity of such priors as well as the use of different kernel densities for this parameter. Finally, we assess the impact of the number of examinees, number of items and the asymmetry level on the parameter recovery. Results of the simulation study indicated that our approach performed equally as well as that in [3], in terms of parameter recovery, mainly using the Jeffreys prior. Also, they indicated that the asymmetry level has the highest impact on parameter recovery, even though it is relatively small. A real data analysis is considered jointly with the development of model fitting assessment tools. The results are compared with the ones obtained by Azevedo et al. The results indicate that using the hierarchical approach allows us to implement MCMC algorithms more easily, it facilitates diagnosis of the convergence and also it can be very useful to fit more complex skew IRT models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study analyzes an accident in which two maintenance workers suffered severe burns while replacing a circuit breaker panel in a steel mill, following model of analysis and prevention of accidents (MAPA) developed with the objective of enlarging the perimeter of interventions and contributing to deconstruction of blame attribution practices. The study was based on materials produced by a health service team in an in-depth analysis of the accident. The analysis shows that decisions related to system modernization were taken without considering their implications in maintenance scheduling and creating conflicts of priorities and of interests between production and safety; and also reveals that the lack of a systemic perspective in safety management was its principal failure. To explain the accident as merely non-fulfillment of idealized formal safety rules feeds practices of blame attribution supported by alibi norms and inhibits possible prevention. In contrast, accident analyses undertaken in worker health surveillance services show potential to reveal origins of these events incubated in the history of the system ignored in practices guided by the traditional paradigm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a probabilistic model of interacting spins indexed by elements of a finite subset of the d-dimensional integer lattice, da parts per thousand yen1. Conditions of time reversibility are examined. It is shown that the model equilibrium distribution converges to a limit distribution as the indexing set expands to the whole lattice. The occupied site percolation problem is solved for the limit distribution. Two models with similar dynamics are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we propose a new Bayesian flexible cure rate survival model, which generalises the stochastic model of Klebanov et al. [Klebanov LB, Rachev ST and Yakovlev AY. A stochastic-model of radiation carcinogenesis - latent time distributions and their properties. Math Biosci 1993; 113: 51-75], and has much in common with the destructive model formulated by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]. In our approach, the accumulated number of lesions or altered cells follows a compound weighted Poisson distribution. This model is more flexible than the promotion time cure model in terms of dispersion. Moreover, it possesses an interesting and realistic interpretation of the biological mechanism of the occurrence of the event of interest as it includes a destructive process of tumour cells after an initial treatment or the capacity of an individual exposed to irradiation to repair altered cells that results in cancer induction. In other words, what is recorded is only the damaged portion of the original number of altered cells not eliminated by the treatment or repaired by the repair system of an individual. Markov Chain Monte Carlo (MCMC) methods are then used to develop Bayesian inference for the proposed model. Also, some discussions on the model selection and an illustration with a cutaneous melanoma data set analysed by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)] are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the thesi is to formulate a suitable Item Response Theory (IRT) based model to measure HRQoL (as latent variable) using a mixed responses questionnaire and relaxing the hypothesis of normal distributed latent variable. The new model is a combination of two models already presented in literature, that is, a latent trait model for mixed responses and an IRT model for Skew Normal latent variable. It is developed in a Bayesian framework, a Markov chain Monte Carlo procedure is used to generate samples of the posterior distribution of the parameters of interest. The proposed model is test on a questionnaire composed by 5 discrete items and one continuous to measure HRQoL in children, the EQ-5D-Y questionnaire. A large sample of children collected in the schools was used. In comparison with a model for only discrete responses and a model for mixed responses and normal latent variable, the new model has better performances, in term of deviance information criterion (DIC), chain convergences times and precision of the estimates.