997 resultados para Helminth Communities
Resumo:
Since the 1940s, portions of the Island of Vieques, Puerto Rico have been used by the United States Navy (USN) as an ammunition support detachment and bombing and maneuver training range. In April 2001, the USN began phasing out military activities on the island and transferring military property to the U.S. Department of the Interior, the Municipality of Vieques, and the Puerto Rico Conservation Trust. A small number of studies have been commissioned by the USN in the past few decades to assess selected components of the coral reef ecosystem surrounding the island; however, these studies were generally of limited geographic scope and short duration. The National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Coastal Ocean Science (NCCOS), in consultation with NOAA’s Office of Response and Restoration (OR&R) and other local and regional experts, conducted a more comprehensive characterization of coral reef ecosystems, contaminants, and nutrient distribution patterns around Vieques. This work was conducted using many of the same protocols as ongoing monitoring work underway elsewhere in the U.S. Caribbean and has enabled comparisons among coral reef ecosystems in Vieques and other locations in the region. This characterization of Vieques’ marine ecosystems consists of a two part series. First, available information on reefs, fish, birds, seagrasses, turtles, mangroves, climate, geology, currents, and human uses from previous studies was gathered and integrated into a single document comprising Part I of this two part series (Bauer et al. 2008). For Part II of the series, presented in this document, new field studies were conducted to fill data gaps identified in previous studies, to provide an island-wide characterization, and to establish baseline values for the distribution of habitats, nutrients, contaminants, fish, and benthic communities. An important objective underlying this suite of studies was to quantify any differences in the marine areas adjacent to the former and current land-use zoning around Vieques. Specifically of interest was the possibility that either Naval (e.g., practice bombing, munitions storage) or civilian activities (e.g., sewage pollutants, overfishing) could have a negative impact on adjacent marine resources. Measuring conditions at this time and so recently after the land transfer was essential because present conditions are likely to be reflective of past land-use practices. In addition, the assessment will establish benchmark conditions that can be influenced by the potentially dramatic future changes in land-use practices as Vieques considers its development. This report is organized into seven chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to the island setting, the former and current land-use zoning, and how the land zoning was used to spatially stratify much of the sampling. Chapter 2 is focused on benthic mapping and provides the methods, accuracy assessment, and results of newly created benthic maps for Vieques. Chapter 3 presents the results of new surveys of fish, marine debris, and reef communities on hardbottom habitats around the island. Chapter 4 presents results of flora and fauna surveys in selected bays and lagoons. Chapter 5 examines the distribution of nutrients in lagoons, inshore, and offshore waters around the island. Chapter 6 is focused on the distribution of chemical contaminants in sediments and corals. Chapter 7 is a brief summary discussion that highlights key findings of the entire suite of studies.
Resumo:
Since 1999, NOAA’s Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) has been working with federal and territorial partners to characterize monitor and assess the status of the marine environment in southwestern Puerto Rico. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort of the La Parguera region in southwestern Puerto Rico was conducted through partnerships with the University of Puerto Rico (UPR) and the Puerto Rico Department of Natural and Environmental Resources (DNER). Project funding was primarily provided by NOAA CRCP and CCMA. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem in the La Parguera region have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a suite of hurricanes, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem several activities are underway or have been implemented to manage the marine resources. These efforts have been supported by the CREM project by identifying marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first seven years of fish survey data (2001-2007) and associated characterization of the benthos. The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure across the seascape including fringing mangroves, inner, middle, and outer reef areas, and open ocean shelf bank areas.
Resumo:
The Flower Garden Banks National Marine Sanctuary (FGBNMS) is located in the northwestern Gulf of Mexico approximately 180 km south of Galveston, Texas. The sanctuary’s distance from shore combined with its depth (the coral caps reach to within approximately 17 m of the surface) result in limited exposure of this coral reef ecosystem to natural and human-induced impacts compared to other coral reefs of the western Atlantic. In spite of this, the sanctuary still confronts serious impacts including hurricanes events, recent outbreaks of coral disease, an increase in the frequency of coral bleaching and the massive Diadema antillarum die-off during the mid-1980s. Anthropogenic impacts include large vessel anchoring, commercial and recreational fishing, recreational scuba diving, and oil and gas related activities. The FGBNMS was designated in 1992 to help protect against some of these impacts. Basic monitoring and research efforts have been conducted on the banks since the 1970s. Early on, these efforts focused primarily on describing the benthic communities (corals, sponges) and providing qualitative characterizations of the fish community. Subsequently, more quantitative work has been conducted; however, it has been limited in spatial scope. To complement these efforts, the current study addresses the following two goals put forth by sanctuary management: 1) to develop a sampling design for monitoring benthic fish communities across the coral caps; and 2) to obtain a spatial and quantitative characterization of those communities and their associated habitats.
Resumo:
Fishes are widely known to aggregate around floating objects, including flotsam and fish aggregating devices (FADs).The numbers and diversity of juvenile fishes that associated with floating objects in the nearshore waters of the eastern tropical Pacific were recording by using FADs as an experimental tool. The effects of fish removal, FAD size, and the presence or absence of a fouling community at the FAD over a period of days, and the presence of prior recruits over a period of hours were evaluated by using a series of experiments. The removal of FAD-associated fish assemblages had a significant effect on the number of the dominant species (Abudefduf troschelii) in the following day’s assemblage compared to FADs where the previous day’s assemblage was undisturbed; there was no experimental effect on combined species totals. Fishes do, however, discriminate among floating objects, forming larger, more species-rich assemblages around large FADs compared to small ones. Fishes also formed larger assemblages around FADs possessing a fouling biota versus FADs without a fouling biota, although this effect was also closely tied to temporal factors. FADs enriched with fish accumulated additional recruits more quickly than FADs that were not enriched with fish and therefore the presence of prior recruits had a strong, positive effect on subsequent recruitment. These results suggest that fish recruitment to floating objects is deliberate rather than haphazard or accidental and they sup-port the hypothesis that flotsam plays a role in the interrelationship between environment and some juvenile fishes. These results are relevant to the use of FADs for fisheries, but emphasize that further research is necessary for applied interests.
Resumo:
Solomon Islands has a population of just over half a million people, most of whom are rural-based subsistence farmers and fishers who rely heavily on fish as their main animal-source food and for income. The nation is one of the Pacific Island Counties and Territories; future shortfalls in fish production are projected to be serious, and government policy identifies inland aquaculture development as one of the options to meet future demand for fish. In Solomon Islands, inland aquaculture has also been identified as a way to improve ood and nutrition security for people with poor access to marine fish. This report undertaken by a Worldfish study under the CGIAR Research Program on Aquatic Agricultural Systems explores the e potential role of land-based aquaculture of Mozambique tilapia in Solomon Islands as it relates to household food and nutrition security. This nutrition survey aimed to benchmark the foods and diets of households newly involved in small homestead tilapia ponds and their neighboring households in the central region of Malaita, the most populous island of all the provinces in Solomon Islands. Focus group discussions and semistructured interviews were employed in 10 communities (five inland and five coastal), four clinics, and five schools.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The 1977 climate shift was characterized by low chlorophyll a concentrations and a shift in phytoplankton community composition throughout the upper San Francisco Bay estuary. ... For climate to be a driving force in phytoplankton communities, it must affect mechanisms that control biomass and community composition. The influence of climate on environmental conditions and phytoplankton community composition among water-year types was examined using 19 years of physical, chemical, and phytoplankton data collected monthly at 15 stations throughout the estuary.