951 resultados para Groundwater radioactivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural radioactive tracer-based assessments of basin-scale submarine groundwater discharge (SGD) are well developed. However, SGD takes place in different modes and the flow and discharge mechanisms involved occur over a wide range of spatial and temporal scales. Quantifying SGD while discriminating its source functions therefore remains a major challenge. However, correctly identifying both the fluid source and composition is critical. When multiple sources of the tracer of interest are present, failure to adequately discriminate between them leads to inaccurate attribution and the resulting uncertainties will affect the reliability of SGD solute loading estimates. This lack of reliability then extends to the closure of local biogeochemical budgets, confusing measures aiming to mitigate pollution. Here, we report a multi-tracer study to identify the sources of SGD, distinguish its component parts and elucidate the mechanisms of their dispersion throughout the Ria Formosa – a seasonally hypersaline lagoon in Portugal. We combine radon budgets that determine the total SGD (meteoric + recirculated seawater) in the system with stable isotopes in water (δ2H, δ18O), to specifically identify SGD source functions and characterize active hydrological pathways in the catchment. Using this approach, SGD in the Ria Formosa could be separated into two modes, a net meteoric water input and another involving no net water transfer, i.e., originating in lagoon water re-circulated through permeable sediments. The former SGD mode is present occasionally on a multi-annual timescale, while the latter is a dominant feature of the system. In the absence of meteoric SGD inputs, seawater recirculation through beach sediments occurs at a rate of  ∼  1.4  ×  106 m3 day−1. This implies that the entire tidal-averaged volume of the lagoon is filtered through local sandy sediments within 100 days ( ∼  3.5 times a year), driving an estimated nitrogen (N) load of  ∼  350 Ton N yr−1 into the system as NO3−. Land-borne SGD could add a further  ∼  61 Ton N yr−1 to the lagoon. The former source is autochthonous, continuous and responsible for a large fraction (59 %) of the estimated total N inputs into the system via non-point sources, while the latter is an occasional allochthonous source capable of driving new production in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water samples were collected from 33 domestic wells, 2 springs, and 3 streams in the Shields River Basin (Basin) in southwest Montana. Samples were collected in 2013 to describe the chemical quality of groundwater in the Basin. Sampling was done to assess potential impacts to water quality from recent exploratory oil and gas drilling and to establish baseline water quality conditions. Wells were selected in areas near and away from oil and gas drilling and in areas susceptible to contamination. Water samples from surface water sites were collected in October to characterize base flow conditions. Physical characteristics of the land surface, soils, and shallow aquifers were used to assess groundwater susceptibility to contamination from the land surface. This analysis was completed using GIS. Samples were analyzed for major ions, trace metals, water isotopes of oxygen and hydrogen. A subset (24) of samples were analyzed for tritium and organic constituents (GRO, DRO, BTEX, methane, ethylene, and ethane). One sample exceeded the human health drinking water standard for selenium. Dissolved methane and ethylene gas were detected in six samples at concentrations less than 0.184 milligrams per liter. Three locations were resampled in 2014, and no methane or ethylene was detected. Shallow groundwater and streams are generally calcium- or sodium-bicarbonate type water with total dissolved solids concentration less than 300 milligrams per liter. Some wells produce either sodium-chloride or sodium-sulfate type water suggesting slower flow paths and more rock-water interaction. Tritium concentrations suggest that older water (TU< 0.8), recharged prior to the mid-1950’s, is generally sodium type, whereas younger water (TU > 4) is generally a calcium type. Water-quality data from this study were compared to available historic data in the Basin. Additionally, the USGS Produced Waters Geochemical database was queried for chemical data of produced waters from reservoir rocks throughout Montana and the surrounding states. Comparisons to historic and produced water chemical data suggest no impact to shallow groundwater quality from exploratory oil and gas drilling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent marine long-offset transient electromagnetic (LOTEM) measurements yielded the offshore delineation of a fresh groundwater body beneath the seafloor in the region of Bat Yam, Israel. The LOTEM application was effective in detecting this freshwater body underneath the Mediterranean Sea and allowed an estimation of its seaward extent. However, the measured data set was insufficient to understand the hydrogeological configuration and mechanism controlling the occurrence of this fresh groundwater discovery. Especially the lateral geometry of the freshwater boundary, important for the hydrogeological modelling, could not be resolved. Without such an understanding, a rational management of this unexploited groundwater reservoir is not possible. Two new high-resolution marine time-domain electromagnetic methods are theoretically developed to derive the hydrogeological structure of the western aquifer boundary. The first is called Circular Electric Dipole (CED). It is the land-based analogous of the Vertical Electric Dipole (VED), which is commonly applied to detect resistive structures in the subsurface. Although the CED shows exceptional detectability characteristics in the step-off signal towards the sub-seafloor freshwater body, an actual application was not carried out in the extent of this study. It was found that the method suffers from an insufficient signal strength to adequately delineate the resistive aquifer under realistic noise conditions. Moreover, modelling studies demonstrated that severe signal distortions are caused by the slightest geometrical inaccuracies. As a result, a successful application of CED in Israel proved to be rather doubtful. A second method called Differential Electric Dipole (DED) is developed as an alternative to the intended CED method. Compared to the conventional marine time-domain electromagnetic system that commonly applies a horizontal electric dipole transmitter, the DED is composed of two horizontal electric dipoles in an in-line configuration that share a common central electrode. Theoretically, DED has similar detectability/resolution characteristics compared to the conventional LOTEM system. However, the superior lateral resolution towards multi-dimensional resistivity structures make an application desirable. Furthermore, the method is less susceptible towards geometrical errors making an application in Israel feasible. In the extent of this thesis, the novel marine DED method is substantiated using several one-dimensional (1D) and multi-dimensional (2D/3D) modelling studies. The main emphasis lies on the application in Israel. Preliminary resistivity models are derived from the previous marine LOTEM measurement and tested for a DED application. The DED method is effective in locating the two-dimensional resistivity structure at the western aquifer boundary. Moreover, a prediction regarding the hydrogeological boundary conditions are feasible, provided a brackish water zone exists at the head of the interface. A seafloor-based DED transmitter/receiver system is designed and built at the Institute of Geophysics and Meteorology at the University of Cologne. The first DED measurements were carried out in Israel in April 2016. The acquired data set is the first of its kind. The measured data is processed and subsequently interpreted using 1D inversion. The intended aim of interpreting both step-on and step-off signals failed, due to the insufficient data quality of the latter. Yet, the 1D inversion models of the DED step-on signals clearly detect the freshwater body for receivers located close to the Israeli coast. Additionally, a lateral resistivity contrast is observable in the 1D inversion models that allow to constrain the seaward extent of this freshwater body. A large-scale 2D modelling study followed the 1D interpretation. In total, 425 600 forward calculations are conducted to find a sub-seafloor resistivity distribution that adequately explains the measured data. The results indicate that the western aquifer boundary is located at 3600 m - 3700 m before the coast. Moreover, a brackish water zone of 3 Omega*m to 5 Omega*m with a lateral extent of less than 300 m is likely located at the head of the freshwater aquifer. Based on these results, it is predicted that the sub-seafloor freshwater body is indeed open to the sea and may be vulnerable to seawater intrusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report summarizes the results of groundwater monitoring that took place from October 2014 - April 2015. Raw, untreated groundwater was sampled from forty-five municipal wells generall characterized as vulnerable to contamination from surface activities. Samples were analyzed for basic water quality parameters, nutrients, atrazine and two of its breakdown products, chloroacetanilide herbicides and their ethanesulfonic and oxanalic acid degradates, and a suite of sixteen pharmaceutical compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies in Iowa have long documented the vulnerability of wells with less than 50 feet (15 meters) of confining materials above the source aquifer to contamination from nitrate and various pesticides. Recent studies in Wisconsin have documented the occurrence of viruses in untreated groundwater, even in wells considered to have little vulnerability to contamination from near-surface activities. In addition, sensitive methods have become available for analyses of pharmaceuticals and pesticides. This study represents the first comprehensive examination of contaminants of emerging concern in Iowa’s groundwater conducted to date, and one of the first conducted in the United States. Raw groundwater samples were collected from 66 public supply wells during the spring of 2013, when the state was recovering from drought conditions. Samples were analyzed for 206 chemical and biological parameters; including 20 general water-quality parameters and major ions, 19 metals, 5 nutrients, 10 virus groups, 3 species of pathogenic bacteria, 5 microbial indicators, 108 pharmaceuticals, 35 pesticides and pesticide degradates, and tritium. The wells chosen for this study represent a diverse range of ages, depths, confining material thicknesses, pumping rates, and land use settings. The most commonly detected contaminant group was pesticide compounds, which were present in 41% of the samples. As many as 6 pesticide compounds were found together in a sample, most of which were chloroacetanilide degradates. While none of the measured concentrations of pesticide compounds exceeded current benchmark levels, several of these compounds are listed on the U.S. Environmental Protection Agency’s Contaminant Candidate List and could be subject to drinking water standards in the future. Despite heavy use in the past decade, glyphosate was not detected, and its metabolite, aminomethylphosphonic acid, was only detected in two of 60 wells tested (3%) at the detection limit of 0.02 μg/L. Pharmaceutical compounds were detected in 35% of 63 samples. Of the 14 pharmaceuticals detected, six had reported concentrations above the method reporting limit, with the maximum reported concentration of 826 ng/L for acetaminophen. Diphenhydramine was the only pharmaceutical to have two detections above the reporting limit, at 24.5 and 145 ng/L. Eight pharmaceuticals had confirmed detections at concentrations below the method reporting limit. Caffeine was the most frequently detected pharmaceutical compound (25%), followed by the caffeine metabolite, 1,7-dimethylxanthine (16%). Microorganisms were detected in 21% of the wells using quantitative polymerase chain reaction methodologies. The most frequently detected microorganism was the pepper mild mottle virus (PMMV), a plant pathogen found in human waste. PMMV was detected in 17% of samples at concentrations ranging from 0.4 to 6.38 gene copies per liter. GII norovirus, human polyomavirus, bovine polyomavirus, and Campylobacter were also detected, while adenovirus, enterovirus, GI norovirus, swine hepatitis E, Salmonella, and enterohemmorhagic E. coli were not detected. No correlations were found between viruses or pathogenic bacteria and microbial indicators. Wells with less than 50 feet (15 meters) of confining material were shown to have greater incidence of surface-related contaminants; however, significant relationships (p<0.05) between confining layer thickness and contaminants were only found for nitrate and herbicides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Alentejo region, southern Portugal, differences in groundwater samples from six groundwater bodies covered with different land uses were analysed based on the monitoring plan of the Alqueva multi-purpose project, created in the sequence of the construction of the Alqueva Dam on the Guadiana River, in South Portugal. For most of the groundwater bodies there is a statistical significant difference between magnesium, sulphate, chloride, and phosphate. All of these ions are strongly correlated with land use management. Groundwater, where land is covered by olive groves, has high levels of electric conductivity, calcium, potassium, sulphate, and phosphate. Dry land crops are correlated with calcium, magnesium, chloride and consequently, electric conductivity, phosphates and sulphate. Vineyards are strongly correlated with high sulphate and phosphate levels. This study clearly shows that different land uses within a certain groundwater body influence the water quality in a different way. Therefore, an appropriate soil management should be adjusted to each situation, taking into account the aquifer matrix and the overlying soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to turn more efficient the heating of class rooms in the lower floor of the old building of the University of Évora (a XVI century building), five drillings were organised inside the area of the university (Figure 1). The purpose was to use the temperature differential of groundwater in relation to air, by means of a heat exchanger, and use this process to heat the rooms using less energy, turning the heating process less expensive. The wells were drilled in fractured rocks (gneisses), and the purpose was to locate them at least around 100 m one from each other, whilst trying to have a hydraulic connection in-between. From the five initial wells, four were successful in terms of productivity, but just two of them (RA1 and RA2) proved to be hydraulically connected. The wells were equipped with screens for all their drilled depth (100 m), except for the first six meters and some two or three pipes of six meters each, to allow space for the installation for submersible pumps. The length of the installed screens guarantees a good efficiency of the system. In the wells with no connection, the heating system can work using each single well for abstraction and injection, but the process is much less efficient than in the cases where interaction between wells is possible through the rock’s fracture network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the risk of groundwater contamination from organic substances in sewage sludge from wastewater treatment stations was evaluated in its worst case. The sewage sludge was applied as fertilizer in corn culture, prioritizing the substances for monitoring. The assessing risk took place in a Typic Distrophic Red Latossol (TDRL) area, in the county district of Jaguariúna, SP. The simulators CMLS-94 and WGEN were used to evaluate the risk of twenty-eight organic substances in sewage sludge to leach to groundwater. The risk of groundwater contamination was accomplished for a single sludge dose application in a thousand independent and equally probable years, simulated to esteem the substances leaching in one year after the application date of the sludge. It is presented the substances that should be priorly monitored in groundwater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The region of Ribeirão Preto City located in São Paulo State, southeastern Brazil, is an important sugarcane, soybean and corn producing area. This region is also an important recharge area (Espraiado) for groundwater of the Guarany aquifer, a water supply source for the city and region. It has an intercontinental extension that comprises areas of eight Brazilian states, as well as significant portions of other South American countries like Argentina, Uruguay, and Paraguay, with a total area of approximately 1,200,000 Km2. Due to the high permeability of some soils present in this region, the high mobility of the herbicides and fertilizers applied, and being a recharge area, it is important to investigate the potential transport of applied fertilizers to underlying aquifer. The cultivation sugar cane in this area demands the frequent use of nitrogen as fertilizer. This research was conducted to characterize the potential contamination of groundwater with nitrogen in the recharge area of groundwater. Seven groundwater sample points were selected in the Espraiado stream watershed, during the years of 2005 and 2006. Samples were collected during the months of March, July, and December of each year. Three replications were collected at each site. Groundwater was also collected during the same months from county groundwater wells located throughout the city. The following six wells were studied: Central, Palmares, Portinari, Recreio Internacional, São Sebastião, and São José. Nitrate water samples were analyzed by Cadmium Reduction Method. No significant amount of nitrate was found in the recharge, agricultural, area. However, nitrate levels were detected at concentrations higher than the Maximum Concentration Level (MCL) of 10mg/L in downtown, urban, well located away from agricultural sites with no history of fertilizer or nitrogen application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research presented herein aims to investigate the strengths and weaknesses of a relatively new technique called phytoscreening. Parallel to the well-known phytoremediation, it consists of exploiting the absorbing potential of trees to delineate groundwater contamination plumes, especially for chlorinated ethenes (i.e., PCE, TCE, 1,2-cis DCE, and VC). The latter are prevalent contaminants in groundwater but their fate and transport in surface ecosystems, such as trees, are still poorly understood and subjected to high variability. Moreover, the analytical validity of tree-coring is still limited in many countries due to a lack of knowledge of its application opportunities. Tree-cores are extracted from trunks and generally analyzed by gas chromatography/mass spectrometry. A systematic review of former literature on phytoscreening for chlorinated ethenes is presented in this PhD thesis to evaluate the factors influencing the effectiveness of the technique. Besides, we tested the technique by probing eight sites contaminated by chlorinated ethenes in Italy (Emilia-Romagna) in different hydrogeological and seasonal settings. We coupled the technique with the assessment of gaseous-phase concentrations directly on-site, inserting detector tubes or a photoionization detector in the tree-holes left by the coring tool. Finally, we applied rank order statistic analysis on field data along with literature data to assess under which conditions phytoscreening should be applied to either screen or monitor environmental contamination issues. A relatively high correlation exists between tree-core and groundwater concentrations (Spearman’s ρ > 0.6), being higher for compounds with higher sorption, for sites with shallower and thinner aquifers, and when sampling specific tree types with standardized sampling and extraction protocols. These results indicate the opportunities for assessing the occurrence, type, and concentration of solvents directly from the stem of trees. This can reduce the costs of characterization surveys, allowing rapid identification of hotspots and plume direction and thus optimizing the drilling of boreholes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first days of radioactivity, the discoveries of X-rays, radioactivity, of alpha- and beta- particles and gamma- radiation, of new radioactive elements, of artificial radioactivity, the neutron and positron and nuclear fission are reviewed as well as several adverse historical marks, such as the Manhattan project and some nuclear and radiological accidents. Nuclear energy generation in Brazil and the world, as an alternative to minimize environmental problems, is discussed, as are the medicinal, industrial and food applications of ionizing radiation. The text leads the reader to reflect on the subject and to consider its various aspects with scientific and technological maturity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A discussion about groundwater contamination is presented in this work. Contamination by agricultural activity, more specifically by pesticides is emphasized. Indirect and direct estimates could be used to predict pesticide behavior in soil, and consequently, to evaluate the potential of groundwater contamination. These results could be applied to advise about the possibility of groundwater contamination by pesticides, and to provide subsidies for making decisions more quickly and efficiently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antimicrobials, among other veterinary drugs, are used worldwide in industry and agriculture to protect animal health and prevent economic loss. In recent years, they have been detected in various environmental compartments, including soil, surface and groundwater and have become a topic of research interest. Emphasizing this class of compounds, this review presents the different pathways which veterinary drugs enter in the environment, in particular contaminate soils. Also are presented regulatory aspects and guidelines, adsorption/desorption and degradation of these compounds in soils and the consequences of its dispersal in the environment.